Roll No. \qquad

Y-512 / Y-513 / Y-514
 B.Sc. Hons. (Third Year) EXAMINATION, March/April-2021 MATHEMATICS

Paper - I, II, III
LINEAR ALGEBRAAND NUMERICAL ANALYSIS/REAL AND COMPLEX ANALYSIS/STATISTICAL METHODS

Time : Three Hours
Maximum Marks : $40+40+40=120$
Minimum Pass Marks : 33\%
नोट- सभी प्रश्न हल कीजिए।
Attempt all questions.
खण्ड (अ)/(Section A)

1. सिद्ध कीजिए कि सदिश उपसमष्टियों का संघ एक सदिश उपसमष्टि होगा यदि और केवल यदि जब वे एक दूसरे में अन्तर्विष्ट होंगे।
Prove that the union of two sub space is a subspace if and only if is contained in other.
2. एक परिमित विमीय सदिश समष्टि पर एक रेखिक रूपान्तरण T प्रतिलोमीय है यदि और केवल यदि T व्युत्क्रमणीय है।
A Linear transformation T on a finite dimensional vector space is invertible if and only if T is non-singular.
3. न्यूटन विधि के प्रयोग से दशमलव के तीन स्थानों तक सही-सही समीकरण $x \sin x+\cos x=0$ का एक मूल ज्ञात कीजिए।
Using Newton's formula find a roots of equation $x \sin x+\cos x=0$ correct to three decimal place.

खण्ड (ब)/(Section B)

4. सिद्ध कीजिए कि प्रत्येक सतत् फलन रीमान् समाकलनीय होता है।

Every continuous function is Riemann integrable.
5. गामा फलन की अभिसारिता की विवेचना कीजिए

$$
\begin{equation*}
\int_{0}^{\infty} x^{n-1} e^{-x} d x \tag{13}
\end{equation*}
$$

Discuss the convergence of gamma function

$$
\begin{equation*}
\int_{0}^{\infty} x^{n-1} e^{-x} d x \tag{14}
\end{equation*}
$$

6. दर्शाइए कि $d(x, y)=\frac{|x-y|}{1+|x-y|}, \mathrm{R}$ पर एक दूरीक समष्टि है।

Show that $d(x, y)=\frac{|x-y|}{1+|x-y|}$ is a metric space on R .

खण्ड (स)/(Section C)
7. द्विपद बंटन के लिए माध्य, प्रसरण और माध्य के परितः तृतीय आघूर्ण ज्ञात कीजिए।

Find mean, variance and third moment about mean for the Binomial distribution.
8. निम्नलिखित आँकड़ों से द्वितीय घात का परवलय आसंजित कीजिए :

Fit a second degree parabola to the following data :

\boldsymbol{x}	\boldsymbol{y}
0	1
1	1.8
2	1.3
3	2.5
4	6.3

9. सिद्ध कीजिए कि 2×2 आसंग सारणी $\frac{a}{c \mid} \left\lvert\, \begin{aligned} & \text { b } \\ & c\end{aligned}\right.$ में
$\chi^{2}=\frac{(a+b+c+d)(a d-b c)^{2}}{(a+b)(c+d)(b+d)(a+c)}$.

Show that in a 2×2 contingency table | a | b |
| :--- | :--- |
| c | d |

$\chi^{2}=\frac{(a+b+c+d)(a d-b c)^{2}}{(a+b)(c+d)(b+d)(a+c)}$.

