Roll No. \qquad

$$
\text { Y - } 421 / Y-422 / Y-423 / Y-424 / Y-425 / Y-426 / Y-427
$$

B.A. (Third Year) (SPECIAL) EXAMINATION, August 2021 (SECOND CHANCE) MATHEMATICS
Paper - I, II \& III (A, B, C, D, E)
LINEAR ALGEBRA AND NUMERICAL ANALYSIS / REAL AND
COMPLEX ANALYSIS / STATISTICAL METHODS / DISCRETE MATHEMATICS / MECHANICS / MATHEMATICAL MODELLING / FINANCIAL MATHEMATICS

Time : Three Hours
Maximum Marks : $40+40+40=120$ (For Regular Students) Minimum Pass Marks : 33\%
Maximum Marks : $50+50+50=150$ (For Private Students) Minimum Pass Marks : 33\%
नोट- खण्ड अ एवं ब अनिवार्य हैं। शेष खण्डों में से कोई एक खण्ड कीजिए।
Section A and B are compulsory. Attempt any one Section from Remaining Sections.
खण्ड-अ / (Section-A) (Linear Algebra and Numerical Analysis)

1. सिद्ध कीजिए कि आन्तरिक गुणन समष्टि में सदिश α तथा β रैखिकतः परतंत्र होंगे यदि और केवल यदि $|(\alpha, \beta)|=\|\alpha\|\|\beta\|$.
Prove that in an inner product space the vectors α and β are linearly dependent if and only if $|(\alpha, \beta)|=\|\alpha\|\|\beta\|$.
2. सीकेन्ट विधि की अभिसारिता की दर ज्ञात कीजिए।

Find the rate of convergence of Secant method.
3. गॉउस विलोपन विधि से निम्नलिखित समीकरणों को हल कीजिए :

$$
\begin{gathered}
10 x+y+2 z=13 \\
3 x+10 y+z=14 \\
2 x+3 y+10 z=15
\end{gathered}
$$

Solve by Gauss-elimination method :

$$
\begin{gathered}
10 x+y+2 z=13 \\
3 x+10 y+z=14 \\
2 x+3 y+10 z=15
\end{gathered}
$$

खण्ड-ब / (Section-B) (Real And Complex Analysis)

4. सिद्ध कीजिए कि दूरीक समष्टि में प्रत्येक विवृत गोला विवृत समुच्चय होता है।

Show that every open sphere is open set in a metric space.
5. सिद्ध कीजिए कि संहत दूरीक समष्टि का संवृत उपसमुच्चय संहत होता है।

Show that closed subset of a compact metric space is compact.
6. उस मोबियस रूपांतरण को ज्ञात कीजिए जो बिन्दुओं 0,1 और ∞ को क्रमशः $1, i$ और -1 में प्रतिचित्रित करता है।
Find Mobius transformation which maps the point 0,1 and ∞ into $1, i$ and -1 respectively.

खण्ड-स / (Section-C) (Statistical Methods)
7. निम्न बंटन की माध्यिका ज्ञात कीजिए :
वर्ग बारंबारता

0-10

$$
10-20
$$22

20-30 46
30-40 35
40-50 20

Find median of the following distribution :

Class

0-10
10-20
20-30
30-40
40-50
Frequency
22
38
46
30-40
35

$$
20
$$

8. एक सिक्के को चित्त मिलने तक उछाला जाता है। उछालों की संख्या की प्रत्याशा क्या है ? $13 / 17$ A coin is tossed untill the head appears. What is the expectation of the number of tosses ?
9. सिद्ध कीजिए कि कोटि सहसम्बन्ध गुणांक :

$$
r=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)}
$$

Show that coefficient of rank co-relation :

$$
r=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)}
$$

खण्ड-द / (Section-D) (Discrete Mathematics)

10. सिद्ध कीजिए कि यदि समुच्चय A में R एक तुल्यता सम्बन्ध है तो R^{-1} समुच्चय A में एक तुल्यता सम्बन्ध है।

Prove that if R is an equivalence relation in the set A, then R^{-1} is an equivalence relation in the set A.
11. अंशतः क्रम सम्बन्ध को समझाइए। माना S समुच्चयों का कोई वर्ग (class of sets) है तब सिद्ध कीजिए कि समुच्चय अन्तर्वेशन (set inclusion) \subseteq समुच्चय S पर एक अंशतः क्रम सम्बन्ध (partial order relation) है।

13/17
Explain partial order relation. Let S be any class of sets. Prove that the relation of set inclusion \subseteq is a partial order relation on S .
12. सरल आलेख (simple graph) को परिभाषित कीजिए और दर्शाइये कि n शीर्षों सहित एक सरल ग्राफ में कोरों की महत्तम संख्या $\frac{n(n-1)}{2}$ होती है।

Define simple graph and show that the maximum number of edges in a simple graph n vertices is $\frac{n(n-1)}{2}$.

खण्ड-य / (Section-E) (Mechanics)
13. तीन बल $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ रेखाओं द्वारा गठित त्रिभुज के पक्षों के साथ कार्य करते हैं $x+y=1$, $y-x=1, y=2$. उनके परिणामी कार्रवाई की रेखा के समीकरण का पता लगाइए। $13 / 16$ Three forces $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ act along the sides of the triangle formed by the lines $x+y=1, y-x=1, y=2$. Find the equation of the line of action of their resultant.
14. इस स्थिति का पता लगाने के लिए कि सीधी रेखा $\frac{x-f}{l}=\frac{y-g}{m}=\frac{z-h}{n}$ बलों की प्रणाली के लिए एक अशक्त रेखा हो सकती है (X, Y, Z, L, M, N).

13/17
To find the condition that the straight line $\frac{x-f}{l}=\frac{y-g}{m}=\frac{z-h}{n}$ may be a null line for the system of forces ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{L}, \mathrm{M}, \mathrm{N}$).
15. एक कण एक वृत्त $r=2 a \cos \theta$ के साथ इस तरह से चलता है कि मूल के प्रति इसका त्वरण हमेशा शून्य होता है $\frac{d^{2} \theta}{d t^{2}}=-2 \cos \theta \dot{\theta}^{2}$ साबित कीजिए।
(4) $\mathrm{Y}-421 / \mathrm{Y}-422 / \mathrm{Y}-423 / \mathrm{Y}-424 / \mathrm{Y}-425 / \mathrm{Y}-426 / \mathrm{Y}-427$ (A)
A particle moves along a circle $r=2 a \cos \theta$ in such a way that its acceleration towards the origin is always zero. Prove that :

$$
\frac{d^{2} \theta}{d t^{2}}=-2 \cos \theta \dot{\theta}^{2}
$$

खण्ड-र / (Section-F) (Mathematical Modelling)
16. मॉडल

$$
\frac{d \mathrm{~N}}{d t}=r \mathrm{~N}\left(1-\frac{\mathrm{N}}{k}\right)
$$

के रैखिक स्थिरता का विश्लेषण कीजिए।
Conduct linear stability analysis of model

$$
\frac{d \mathrm{~N}}{d t}=r \mathrm{~N}\left(1-\frac{\mathrm{N}}{k}\right)
$$

17. निम्नलिखित विविक्त मॉडल

$$
u_{t+1}=r u_{t}\left(1-u_{t}\right),
$$

जहाँ $r>0$ की रैखिक स्थिरता का विश्लेषण कीजिए।
Conduct linear stability analysis of the following discrete model

$$
u_{t+1}=r u_{t}\left(1-u_{t}\right)
$$

Where $r>0$.
18. निम्नलिखित मॉडल

14/17

$$
u_{t+1}=u_{t} \exp \left[r\left(1-u_{t-1}\right)\right]
$$

जहाँ $r>0$ के रैखिक स्थिरता का विश्लेषण कीजिए।
Discuss linear stability analysis of the following model :

$$
u_{t+1}=u_{t} \exp \left[r\left(1-u_{t-1}\right)\right]
$$

Where $r>0$.
खण्ड-ल / (Section-G) (Financial Mathematics)
19. जोखिम सट्टे एवं जुए में अन्तर को समझाइए।

Explain difference between Risk Speculation and Gambling.
20. 6,750 रु. का $6 \frac{2}{3} \%$ वार्षिक दर से 3 वर्ष का चक्रवृद्धि ब्याज ज्ञात कीजिए।

Find the Compound Interest on Rs. 6,750 for 3 years at $6 \frac{2}{3} \%$ per annum rate of interest.
21. प्रतिभूति एवं विनियोजन जोखिम की वापसी की गणना समझाइए।

Explain calculation of security and portfolio risk and return.

$$
\mathrm{Y}-421 / \mathrm{Y}-422 / \mathrm{Y}-423 / \mathrm{Y}-424 / \mathrm{Y}-425 / \mathrm{Y}-426 / \mathrm{Y}-427 \text { (A) }
$$

