Roll No.

Y - 3638

B.C.A. (Fourth Semester) EXAMINATION, May/June-2021

Paper – 401

NUMERICAL METHODS

Time: Three Hours

Maximum Marks: 80 Minimum Pass Marks: 32

Note—Attempt *all* questions.

Unit-I

- 1. (a) Find a real root of the equation $f(x) = x^3 2x 5 = 0$ using bisection method in five stages.
 - (b) Find a root of the equation $x e^{-x} = 0$ correct to three decimal places by the secant method.

Unit-II

2. (a) Solve the following system by Gauss elimination method—

$$6x_1 + 3x_2 + 2x_3 = 6$$

$$6x_1 + 4x_2 + 3x_3 = 0$$

$$20x_1 + 15x_2 + 12x_3 = 0$$

(b) Solve by Jacobi's iteration method

$$27x + 6y - z = 85$$

 $6x + 15y + 2z = 72$
 $x + y + 54z = 110$

Unit-III

3. (a) Estimate the sale for 1966 using the following table—

Year	1931	1941	1951	1961	1971	1981
Sale in thousand	12	15	20	27	39	52

(b) Given that:

<i>x</i> :	5	7	11	13	17
f(x):	150	392	1452	2366	5202

Evaluate f(9), using Newton's divided difference formula.

8

8

8

8

(2) Y - 3638

Unit-IV

4. (a) Show that $\int_0^1 \frac{dx}{1+x} = \log_e^2 = 0.69315$

(b) Evaluate the integral 8

$$I = \int_0^1 \frac{dx}{1+x}$$

Unit-V

5. (a) Use Picard's method to approximate y when x = 0.2 given that y = 1

when
$$x = 0$$
, and $\frac{dy}{dx} = x - y$

(b) Use Euler's method to find y(0.4) from the differential equation

$$\frac{dy}{dx} = xy, \ y(0) = 1. \text{ Take for each step } h = 0.1$$