Roll No. \qquad

Y- 3638 (A)

B.C. A. (Fourth Semester) (SPECIAL) EXAMINATION, August 2021
[SECOND CHANCE]
PAPER-I
NUMERICAL METHODS
Time : Three Hours
Maximum Marks : 80 (For Regular Students)
Minimum Pass Marks : 32
Note-Attempt all questions.

1. (a) Use-Newton's method to find a root of the equation $x^{3}-3 x-5=0.8$
(b) Find the root of the equation $x e^{x}=\cos x$ using the regula-falsi method correct to four decimal places.
2. (a) Solve by Gauss-elimination method:
$2 x+y+4 z=12$
$8 x-3 y+2 z=23$
$4 x+11 y-z=33$
(b) Solve the equation :
$x+4 x-z=-5$
$x+y-6 z=-12$
$3 x-y-z=4$
Using Gauss-Jordan method.
3. (a) Given
$\sin 45^{\circ}=0.7071, \sin 50^{\circ}=0.7660$
$\sin 55^{\circ}=0.8192, \sin 60^{\circ}=0.8660$
Find $\sin 52^{\circ}$ by using Newton's forward difference interpolation formula.
(b) Find the third divided difference with arguments 2, 4, 9, 10 of the function $f(x)=x^{3}-2 x$.
4. (a) Find a unique polynomial of degree 2 or less such that $f(0)=1$, $f(1)=3, f(3)=55$ using Newton's divided difference interpolation formula.
(b) Calculate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ taking $h=0.125$ with the help of trapezoidal rule.
5. (a) Using Euler's method solve the differential equation in six steps $\frac{d y}{d x}=x+y, y(0)=0$, choosing $h=0.2$. 8
(b) Using Runge-Kutta method of fourth order to solve

$$
\begin{equation*}
\frac{d y}{d x}=x y \text { for } x=1.2, \text { initially } x=1, y=2(\text { take } h=0.1) \tag{8}
\end{equation*}
$$

