Roll No.

Y - 3631

B.C.A. (Second Semester) EXAMINATION, May/June-2021

Paper – 201

ADVANCE CALCULUS

Time : Three Hours

Maximum Marks : 80

Minimum Pass Marks : 32

Note—Attempt *all* questions.

Unit-I

1.	(a)	Show that the function $f(x,y) = \sin x + \cos y$ is differentiable everywhere
		in R ² . 8
	(b)	If $f(x, y) = x^2 - 3xy + 2y^2$ then using by mean value theorem to express
		the difference $f(1,2) - f(2, -1)$ by partial derivatives, compute θ and
		check that it is between 0 and 1. 8
Unit-II		
2.	(a)	Find the envelop of the ellipses 8
		$x = a \sin(\theta - \alpha),$
		$y = b \cos \theta$. where α is the parameter.
	(b)	Find the evolute of the hyperbola8
		$2xy = a^2$
Unit-III		
3.	(a)	Prove that 8
		$\overline{(m)} \ \overline{(m+\frac{1}{2})} = \frac{\sqrt{\pi}}{2^{2m-1}} \overline{(2m)}, \text{ where } m > 0$
		dv

(b) Evaluate $\int_0^\infty \frac{dx}{1+x^4}$ 8

(2)

Unit-IV

4. (a) If R be the region between the parabola $y = x^2$ and straight line y = x + 6 then evaluate. 8

$$\iint_{\mathbf{R}} x d\mathbf{A}.$$

(b) Change the order of integration in the double integral

$$I = \int_0^1 \int_y^1 x^2 \cos(x^2 - xy) \, dy \, dx$$

and hence evaluate it.

Unit-V

5. (a) Test the cenvergence of

$$\int_{a}^{\infty} \frac{dx}{x^{n}}$$
, where $a > 0$.

(b) Test the convergence of

$$\int_0^\infty \frac{x^{3/2} dx}{\sqrt{x^4 - a^4}}$$

8

8