Roll No. \qquad

$$
Y-3631
$$

B.C.A. (Second Semester) EXAMINATION, May/June-2021

$$
\text { Paper - } 201
$$

ADVANCE CALCULUS

Time : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 32
Note—Attempt all questions.

Unit-I

1. (a) Show that the function $f(x, y)=\sin x+\cos y$ is differentiable everywhere in R^{2}.
(b) If $f(x, y)=x^{2}-3 x y+2 y^{2}$ then using by mean value theorem to express the difference $f(1,2)-f(2,-1)$ by partial derivatives, compute θ and check that it is between 0 and 1 .

Unit-II

2. (a) Find the envelop of the ellipses

$$
\begin{aligned}
& x=a \sin (\theta-\alpha), \\
& y=b \cos \theta . \quad \text { where } \alpha \text { is the parameter. }
\end{aligned}
$$

(b) Find the evolute of the hyperbola

$$
2 x y=a^{2}
$$

Unit-III

3. (a) Prove that

$$
\sqrt{(m)} \sqrt{\left(m+\frac{1}{2}\right)}=\frac{\sqrt{\pi}}{2^{2 m-1}}(2 m), \text { where } m>0
$$

(b) Evaluate $\int_{0}^{\infty} \frac{d x}{1+x^{4}}$

Unit-IV

4. (a) If R be the region between the parabola $y=x^{2}$ and straight line $y=x+6$ then evaluate.

$$
\iint_{\mathrm{R}} x d \mathrm{~A} .
$$

(b) Change the order of integration in the double integral

$$
\mathrm{I}=\int_{0}^{1} \int_{y}^{1} x^{2} \cos \left(x^{2}-x y\right) d y d x
$$

and hence evaluate it.

Unit-V

5. (a) Test the cenvergence of

$$
\int_{a}^{\infty} \frac{d x}{x^{n}} \text {, where } a>0 .
$$

(b) Test the convergence of

$$
\int_{0}^{\infty} \frac{x^{3 / 2} d x}{\sqrt{x^{4}-a^{4}}}
$$

