Roll No. \qquad

Y-3180 (A)
 M.A./M.Sc. (Mathematics) (Fourth Semester) (SPECIAL)
 EXAMINATION, August 2021
 (SECOND CHANCE)

Paper - 401

PARTIAL DIFFERENTIAL EQUATION

Time : Three Hours

Maximum Marks : 85
Minimum Pass Marks : 29
Note—Attempt all questions.

1. Find the integral surface of the linear partial differential equation-

$$
x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z
$$

2. Reduce the following equation to a canonical form-

$$
\left(1+x^{2}\right) \mathrm{U}_{x x}+\left(1+y^{2}\right) \mathrm{U}_{y y}+x u_{x}+y u_{y}=0
$$

3. Show that in cylindrical coordinates r, θ, z defined by the relation $x=r \cos \theta$, $y=r \sin \theta, z=z$, the Laplace equation $\nabla^{2} u=0$ takes the form-

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0 \tag{17}
\end{equation*}
$$

4. In a one-dimensional infinite solid, $-\infty<x<\infty$, the surface $a<x<b$ is initially maintained at temperature T_{0} and at zero temperature everywhere outside the surface show that :

$$
\begin{equation*}
\mathrm{T}(x t)=\frac{\mathrm{T}_{0}}{2}\left[\operatorname{erf}\left(\frac{b-x}{\sqrt{4 \alpha t}}\right)-\operatorname{erf}\left(\frac{a-x}{\sqrt{4 \alpha t}}\right)\right] \tag{17}
\end{equation*}
$$

Where erf is an error function.
5. Obtain the periodic solution of the wave equation in the form-

$$
\mathrm{U}(x, t)=\mathrm{A} l^{i(k x \pm w t)}
$$

Where $i=\sqrt{-1}, k= \pm \frac{w}{c}$, A is constant, and hence define various terms involved in wave propagation.

