Roll No.	
----------	--

Y – 3177 (A)

M.A./M.Sc. (Mathematics) (Second Semester) (SPECIAL) EXAMINATION, August 2021

(SECOND CHANCE)

Paper – 203

TOPOLGY

Time : Three Hours

Maximum Marks : 85

Minimum Pass Marks : 29

Note—Attempt *all* questions.

1.	Let $A \subseteq X$ where X is a topological space. Then prove that the closure of A,	
	\overline{A} is given by : $\overline{A} = \{x \in X : \text{every neighbourhood of } x \text{ intersect } A\}$	}. 17
2.	State and prove Lindelof theorem.	17
3.	Let X be a topological space. If $\{A_i\}$ be a non-empty class of connected	
	subspaces of X such that $\cap A_i \neq \phi$ then prove that $A = \cup A_i$ is a c	onnected
	subspace of X.	17
4.	State and prove Lebesgue covering lemma.	17
5.	State and prove Uryson Lemma.	17