Roll No. \qquad

Y-3175 (A)
 M.A./M.Sc. (Mathematics) (Second Semester) (SPECIAL) EXAMINATION, August 2021
 (SECOND CHANCE)
 Paper - 201
 COMPLEXANALYSIS

Time : Three Hours
Maximum Marks : 85
Minimum Pass Marks : 29
Note—Attempt all questions.

1. Define Analytic function. If $f(z)=u+i v$ is an analytic function and $z=r e^{i \theta}$ Where u, v, r, θ are all real, show that the Cauchy Riemann equations are

$$
\begin{align*}
& \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \\
& \frac{\partial v}{\partial r}=\frac{-1}{r} \frac{\partial u}{\partial \theta} \tag{17}
\end{align*}
$$

and
2. Let $f(z)$ be analytic within and on a closed contour C , and let z_{o} any point within C, then

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{z-z_{0}} d z \tag{17}
\end{equation*}
$$

3. Find the bilinear transformation which maps the points $\mathrm{Z}_{1}=2, \mathrm{Z}_{2}=i, \mathrm{Z}_{3}=-2$ into the points $\mathrm{W}_{1}=1, \mathrm{~W}_{2}=i$ and $\mathrm{W}_{3}=-1$.
4. Find the singularity of the function $\frac{e^{c /(z-a)}}{e^{z / a}-1}$, indicating the character of each singularity.
5. Show that 17

$$
\int_{0}^{2 \pi} \cos ^{2 n} d \theta=\frac{2 \pi \mid 2 n}{2^{2 n}(\underline{n})^{2}}
$$

