Roll No. \qquad

Y-3101(A)

M.Sc. (Second Semester) (SPECIAL) EXAMINATION, August 2021
(SECOND CHANCE)
COMPUTER SCIENCE
Paper-201
(Computer Oriented Numerical and Statistical Methods)
Time : Three Hours
Maximum Marks : 85
Minimum Pass Marks : 29
Note : Attempt all questions.

1. Solve the equations :

$$
\begin{array}{r}
10 x_{1}-x_{2}+2 x_{3}=4 \\
x_{1}+10 x_{2}-x_{3}=3 \\
2 x_{1}+3 x_{2}+20 x_{3}=7
\end{array}
$$

Using the Gauss eliminating method.
2. Find the unique polynomial of degree 2 or less, such that $f(0)=1, f(1)=3$, $f(3)=55$. Using :
(i) The Lagrange interpolation
(ii) The Newton divided difference interpolation method.
3. Find the approximate value of:

$$
\mathrm{I}=\int_{0}^{1} \frac{d x}{1+x}
$$

Using the :
(i) Trapezoidal rule
(ii) Simpson's $\frac{1}{3}$ rule. Obtain a bound for the errors.
4. Find the three term Taylor series solution for the third order Blasius equation $\mathrm{W}^{\prime \prime \prime}+\mathrm{WW}^{\prime \prime}=0, \mathrm{~W}(0)=0, \mathrm{~W}^{\prime}(0)=0, \mathrm{~W}^{\prime \prime}(0)=1$. Find the bound on the error for $\mathrm{A} \in[0,0.2]$.
5. Explain Normal distribution.

