Roll No.

Y - 2547A

B.A. B.Ed. (Fourth Semester) EXAMINATION, May/June 2021 EDUCATION

(Mathematics)

Time : Three Hours

Maximum Marks: 85 Minimum Pass Marks : 34 नोट-सभी प्रश्न हल कोजिए। Attempt all questions. निम्नलिखित में से कोई पाँच प्रश्न हल कीजिए : 1. $3 \times 5 = 15$ Attempt any *five* questions from the following : केन्द्रीकारक को परिभाषित कीजिए। (i) Defne Centraliser. अनआबेली ग्रुप के लिये कौशी प्रमेय का कथन लिखिये। (ii) State Cauchy theorem for un-abelian group. गुणजावली को परिभाषित कीजिए। (iii) Define ideal. यदि R बूलीय रिंग है तब सिद्ध कीजिए कि : (iv) $a + a = 0, \forall a \in \mathbb{R}$ If R is boolean ring then show that : $a + a = 0, \forall a \in \mathbb{R}$ सिद्ध कीजिये कि : (v) $\frac{1}{2} = \sqrt{\pi}$ Show that : $\frac{1}{2} = \sqrt{\pi}$ (vi) समाकल $\int_{1+x^2}^{\infty} \frac{dx}{1+x^2}$ के अभिसरण का परीक्षण कीजिए। Test the convergence of integral : $\int_{1}^{\infty} \frac{dx}{1+x^2}$

P.T.O.

(2)

(vii) हल कीजिए :

p + q = 1.

Solve :

$$p + q = 1.$$

(viii) हल कीजिए :

$$(D^2 - 5DD' + 6D'^2) z = 0.$$

Solve :

 $(D^2 - 5DD' + 6D'^2) z = 0.$

(ix) सिद्ध कीजिये कि विश्लेषिक फलन के वास्तविक और काल्पनिक भाग लाप्लास समीकरण को संतुष्ट करते हैं।

Show that real and imaginary part of analytic function satisfies Laplace equation.

(x) फलन $f(z) = z^2 + 3z$ का स्थिर बिन्दु ज्ञात कीजिये। Find fixed point of function $f(z) = z^2 + 3z$. प्रत्येक इकाई से कोई **दो** भाग हल कीजिए।

Attempt any two parts from each unit.

इकाई-I

(Unit-I)

2.	(a)	आबेली ग्रुप की कौशी की प्रमेय लिखिये तथा सिद्ध कीजिये।	7
		State and prove Cauchy theorem of Abelian group.	

- (b) यदि $0(G) = p^2$ जहाँ p अभाज्य संख्या है तब सिद्ध कीजिए कि G आबेली है। 7 If $0(G) = p^2$, where p is prime number then show that G is abelian.
- (c) सिद्ध कीजिए कि ग्रुप का केन्द्र, ग्रुप का प्रसामान्य उपग्रुप होता है।7Show that centre of group is normal subgroup of group.

इकाई-II

(Unit-II)

- 3. (a) सिद्ध कीजिए कि प्रत्येक क्षेत्र पूर्णांकीय प्रांत होता है।
 7 Show that every field is integral domain.
 (b) सिद्ध कीजिए कि दो गुणजावलियों का सर्वनिष्ठ गुणजावली होता है।
 7 Show that intersection of two ideal is ideal.
 - (c) सिद्ध कीजिए कि सभी रिंगों के समुच्चय में तुल्याकारिता का संबंध तुल्यता संबंध होता है। 7

Show that relation of isomorphism in set of rings in equivalence relation.

		(3) Y	- 2547A			
		इकाई-III				
(Unit-III)						
4.	(a)	फलन $u = x^4 + y^4 + z^4$ का उच्चिष्ठ या निम्निष्ठ मान ज्ञात कीजिए जहाँ x	$cyz = c^3$			
	(b)	Find maxima or minima of function $u = x^4 + y^4 + z^4$ where x सिद्ध कीजिए कि :	$cyz = c^3$.			
		$\mathbf{B}(m,n) = \frac{\overline{m \mid n}}{\overline{m + n}}$				
		जहाँ <i>m</i> , <i>n</i> > 0				
		Show that :				
		$B(m, n) = \frac{\boxed{m n}}{\boxed{m + n}}$				
		Where $m, n > 0$.				
		2				
	(c)	समाकल ${ar \int _0^\infty {{{\log x}}\over{{\sqrt {2 - x}}}}} dx$ के अभिसरण का परीक्षण कीजिए।	7			
		Test the convergence of integral $\int_{0}^{2} \frac{\log x}{\sqrt{2-x}} dx$.				
इकाई-IV						
(Unit-IV)						
5.	(a)	हल कीजिए :	7			
		$x^2 p^2 + y^2 q^2 = z^2.$				
		Solve :				
		$x^2 p^2 + y^2 q^2 = z^2.$				
	(b)	चार्पी विधि से हल कीजिए :	7			
		$z = px + qy + p^2 + q^2.$				
		Solve by Charpit's method :				
		$z = px + qy + p^2 + q^2.$				
	(c)	हल कोजिए:	7			
		$x^{2}\frac{\partial^{2}z}{\partial x^{2}} - y^{2}\frac{\partial^{2}z}{\partial y^{2}} = xy.$				

Solve :

$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = xy.$$
 P.T.O.

Y - 2547A

इकाई-V

(4)

(Unit-V)

- 6. (a) यदि $u v = (x y) (x^2 + 4xy + y^2)$ तथा f(z) = u + iv, z = x + iy का विश्लेषिक फलन है तब f(z) को z के पदों में ज्ञात कीजिए। If $u - v = (x - y) (x^2 + 4xy + y^2)$ and f(z) = u + iv is analytic function of z = x + iy then find f(z) in term of z.
 - (b) उस मोबियस रूपांतरण को ज्ञात कीजिए जो 0, 1 और ∞ को क्रमश: 1, *i* और -1 में प्रतिचित्रित करता है। 7 Find mobius transformation which maps 0, 1 and ∞ into 1, *i* and -1respectively.
 - (c) कौशी रीमान् समीकरण का ध्रुवीय रूप व्युत्पन्न कीजिए।7Derive polar form of Cauchy Riemann equation.