Roll No. \qquad

Y - 2547A
 B.A. B.Ed. (Fourth Semester) EXAMINATION, May/June 2021 EDUCATION
 (Mathematics)

Time : Three Hours

Maximum Marks : 85
Minimum Pass Marks : 34
नोट- सभी प्रश्न हल कीजिए।
Attempt all questions.

1. निम्नलिखित में से कोई पाँच प्रश्न हल कीजिए :

Attempt any five questions from the following :
(i) केन्द्रीकारक को परिभाषित कीजिए।

Defne Centraliser.
(ii) अनआबेली ग्रुप के लिये कौशी प्रमेय का कथन लिखिये।

State Cauchy theorem for un-abelian group.
(iii) गुणजावली को परिभाषित कीजिए।

Define ideal.
(iv) यदि R बूलीय रिंग है तब सिद्ध कीजिए कि :

$$
a+a=0, \forall a \in \mathrm{R}
$$

If R is boolean ring then show that :

$$
a+a=0, \forall a \in \mathrm{R}
$$

(v) सिद्ध कीजिये कि :

$$
\sqrt{\frac{1}{2}}=\sqrt{\pi}
$$

Show that :

$$
\sqrt{\frac{1}{2}}=\sqrt{\pi}
$$

(vi) समाकल $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ के अभिसरण का परीक्षण कीजिए।

Test the convergence of integral :

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}
$$

(vii) हल कीजिए :

$$
p+q=1
$$

Solve :

$$
p+q=1
$$

(viii) हल कीजिए :

$$
\left(\mathrm{D}^{2}-5 \mathrm{DD}^{\prime}+6 \mathrm{D}^{\prime 2}\right) z=0 .
$$

Solve :

$$
\left(\mathrm{D}^{2}-5 \mathrm{DD}^{\prime}+6 \mathrm{D}^{\prime 2}\right) z=0
$$

(ix) सिद्ध कीजिये कि विश्लेषिक फलन के वास्तविक और काल्पनिक भाग लाप्लास समीकरण को संतुष्ट करते हैं।
Show that real and imaginary part of analytic function satisfies Laplace equation.
(x) फलन $f(z)=z^{2}+3 z$ का स्थिर बिन्दु ज्ञात कीजिये।

Find fixed point of function $f(z)=z^{2}+3 z$.
प्रत्येक इकाई से कोई दो भाग हल कीजिए।
Attempt any two parts from each unit.

इकाई-I

(Unit-I)
2. (a) आबेली ग्रुप की कौशी की प्रमेय लिखिये तथा सिद्ध कीजिये।

State and prove Cauchy theorem of Abelian group.
(b) यदि $0(\mathrm{G})=p^{2}$ जहाँ p अभाज्य संख्या है तब सिद्ध कीजिए कि G आबेली है। 7

If $0(\mathrm{G})=p^{2}$, where p is prime number then show that G is abelian.
(c) सिद्ध कीजिए कि ग्रुप का केन्द्र, ग्रुप का प्रसामान्य उपग्रुप होता है।

Show that centre of group is normal subgroup of group.
इकाई-II
(Unit-II)
3. (a) सिद्ध कीजिए कि प्रत्येक क्षेत्र पूर्णांकीय प्रांत होता है।

Show that every field is integral domain.
(b) सिद्ध कीजिए कि दो गुणजावलियों का सर्वनिष्ठ गुणजावली होता है।

Show that intersection of two ideal is ideal.
(c) सिद्ध कीजिए कि सभी रिंगों के समुच्चय में तुल्याकारिता का संबंध तुल्यता संबंध होता है।

Show that relation of isomorphism in set of rings in equivalence relation.

> (3)
> इकाई-III
> (Unit-III)
4. (a) फलन $u=x^{4}+y^{4}+z^{4}$ का उच्चिष्ठ या निम्निष्ठ मान ज्ञात कीजिए जहाँ $x y z=c^{3}$ ।

Find maxima or minima of function $u=x^{4}+y^{4}+z^{4}$ where $x y z=c^{3}$.
(b) सिद्ध कीजिए कि :

$$
\mathrm{B}(m, n)=\frac{\sqrt{m} \sqrt{n}}{\sqrt{m+n}}
$$

जहाँ $m, n>0$
Show that :

$$
\mathrm{B}(m, n)=\frac{\sqrt{m} \Gamma_{n}}{\sqrt{m+n}}
$$

Where $m, n>0$.
(c) समाकल $\int_{0}^{2} \frac{\log x}{\sqrt{2-x}} d x$ के अभिसरण का परीक्षण कीजिए।

Test the convergence of integral $\int_{0}^{2} \frac{\log x}{\sqrt{2-x}} d x$.
(Unit-IV)
5. (a) हल कीजिए :

$$
x^{2} p^{2}+y^{2} q^{2}=z^{2} .
$$

Solve :

$$
x^{2} p^{2}+y^{2} q^{2}=z^{2} .
$$

(b) चार्पी विधि से हल कीजिए :

$$
z=p x+q y+p^{2}+q^{2}
$$

Solve by Charpit's method :

$$
z=p x+q y+p^{2}+q^{2}
$$

(c) हल कीजिए :

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}-y^{2} \frac{\partial^{2} z}{\partial y^{2}}=x y .
$$

Solve :

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}-y^{2} \frac{\partial^{2} z}{\partial y^{2}}=x y
$$

(Unit-V)
6. (a) यदि $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ तथा $f(z)=u+i v, z=x+i y$ का विश्लेषिक फलन है तब $f(z)$ को z के पदों में ज्ञात कीजिए।
If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and $f(z)=u+i v$ is analytic function of $z=x+i y$ then find $f(z)$ in term of z.
(b) उस मोबियस रूपांतरण को ज्ञात कीजिए जो 0,1 और ∞ को क्रमशः $1, i$ और -1 में प्रतिचित्रित करता है।
Find mobius transformation which maps 0,1 and ∞ into $1, i$ and -1 respectively.
(c) कौशी रीमान् समीकरण का ध्रुवीय रूप व्युत्पन्न कीजिए।

Derive polar form of Cauchy Riemann equation.

