Roll No.

# Y-178 / Y-179 (S) <br> B.Sc. (First Year) EXAMINATION, (Supp1./Second Chance) Sept.-2021 PHYSICS 

Paper - I, II

## MATHEMATICAL PHYSICS, MECHANICS AND PROPERTIES OF MATTER/THERMODYNAMICS AND STATISTICAL PHYSICS

Time : Three Hours
Maximum Marks : $40+40=80$ (For Regular Students)
Maximum Marks : 50 + 50 $=100$ (For Private Students)

Minimum Pass Marks : 33\%<br>Minimum Pass Marks : 33\%

नोट- सभी प्रश्न हल कीजिये।
Attempt all questions.
खण्ड ( अ)

## Section A

1. (a) किसी सदिश क्षेत्र के कर्ल की परिभाषा दीजिये। इसका मान कार्टिशियन निर्देशांकों में प्राप्त कीजिये तथा सिद्ध कीजिये कि $\operatorname{curl} \overrightarrow{\mathrm{A}}=\vec{\nabla} \times \overrightarrow{\mathrm{A}}$ जहाँ $\vec{\nabla}$ वेक्टर ऑपरेटर है। इसका भौतिक महत्व समझाइये।

10/12
Define curl of a vector field and obtain its value in cartesian coordinates.
Prove that curl $\overrightarrow{\mathrm{A}}=\vec{\nabla} \times \overrightarrow{\mathrm{A}}$ where $\vec{\nabla}$ is a vector operator. Explain its physical significance.
(b) सिद्ध करो कि-
$\operatorname{div} \operatorname{grad} \phi=\nabla^{2} \phi$
Prove that-
$\operatorname{div} \operatorname{grad} \phi=\nabla^{2} \phi$
2. (a) ग्रहों की गति सम्बन्धी केपलर के प्रथम नियम को लिखिये तथा उसे निगमित कीजिये।

10/12
State Kepler's first law of planetary motion and deduce it.
(b) 10 कि.ग्रा., 20 कि.ग्रा. तथा 30 कि. ग्रा. द्रव्यमान के तीन कणों का द्रव्यमान केन्द्र $(1,1,1)$ मीटर है। 40 कि.ग्रा. द्रव्यमान का एक कण कहाँ रखा जावे जिससे कि सम्पूर्ण निकाय का द्रव्यमान केन्द्र $(0,0,0)$ पर हो जावे।

The position of centre of mass of three particle of masses $10 \mathrm{~kg}, 20 \mathrm{~kg}$ and 30 kg is at $(1,1,1) \mathrm{m}$. Where should a particle of mass 40 kg be kept so that the position of centre of mass of entire system becomes $(0,0,0)$.
3. (a) सिद्ध करो कि $y=3 k(1-2 \sigma)$ जहाँ प्रतीकों के सामान्य अर्थ हैं।

10/12
Prove that $y=3 k(1-2 \sigma)$ where the symbols have their usual meaning.
(b) स्टील के लिये यंग प्रत्यास्थता गुणांक $2 \times 10^{11}$ न्यूटन/मीटर ${ }^{2}$ तथा आयतन प्रत्यास्थता गुणांक $11 \times 10^{10}$ न्यूटन $/$ मीटर $^{2}$ है। स्टील के लिये पॉयसन अनुपात ज्ञात करो। $4 / 5$ For steel, Young's modulus of elasticity is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and Bulk modulus of elasticity is $11 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$. Calculate the Poisson's ratio for steel.

## खण्ड (ब)

## Section B

4. कार्नो की प्रमेय लिखिये तथा इसे सिद्ध कीजिये।

13/16
State and prove Carnot's theorem.
5. मैक्सवेल के ऊष्मागतिक सम्बन्धों का उपयोग करते हुये सिद्ध कीजिये कि-

13/17

$$
\frac{\mathrm{E}_{\mathrm{S}}}{\mathrm{E}_{\mathrm{T}}}=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}} \text { जहाँ } \mathrm{E}_{\mathrm{S}} \text { व } \mathrm{E}_{\mathrm{T}}
$$

क्रमशः रुद्धोष्म व समतापीय आयतन प्रत्यास्थता हैं।
Using Maxwell's thermodynamically relations, show that $\mathrm{E}_{\mathrm{S}} / \mathrm{E}_{\mathrm{T}}=\mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{V}}$. Where $\mathrm{E}_{\mathrm{S}}$ and $\mathrm{E}_{\mathrm{T}}$ are respectively the adiabatic and isothermal Bulk modulus.
6. निकाय, समुदाय, केनोनीकल, माइक्रो केनोनीकल (सूक्ष्म विहित) तथा वृहद विहित (ग्राण्ड केनोनीकल) समुदाय से क्या अभिप्राय है ?

14/17
What do you understand by the system ensemble, micro-canonical and grand canonical ensemble ?

