W-3813
 B.C.A. (Sixth Semester) Examination, June-2020 PROBABILITYAND STATISTICS

Paper - I
Time : Three Hours
Maximum Marks : 80 (For Regular Students)
Minimum Pass Marks : 32

Note : Attempt all questions.

Unit - I

Q.1. a) Find the median for the following distribution;

Wages in Rs. 0-10 10-2020-3030-4040-50
No. of workers22 $\quad 38 \quad 46 \quad 35 \quad 20$
b) Draw a frequency polygon for the data given below:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Frequency	2	4	10	4	3	8	1	5	11	2
	Unit - II									

Q.2. a) Find the mean, mode, standard deviation and coefficient of skewness for the following:
$\begin{array}{lllllll}\text { Years under } & 10 & 20 & 30 & 40 & 50 & 60\end{array}$
$\begin{array}{llllllll}\text { No. of persons } & 15 & 32 & 51 & 78 & 97 & 109\end{array}$
b) The first four moments of a distribution about the value 4 of the variable are $-1.5,17$,
-30 and 108. Find the moments about the mean.

Unit - III

Q.3. a) Determine the Binomial distribution for which the mean is 4 and variance is 3 and find its mode.
b) Show that for the Binomial distribution $(q+p)^{n}$,
$\mu_{r+1}=p q\left(n r \mu_{r-1}+\frac{d \mu_{r}}{d p}\right)$
where μ_{r} is the r th moment about the mean. Hence obtain μ_{2}, μ_{3} and μ_{4}.
Unit - IV
Q.4. a) Find the coefficient of correlation between the value of X andY

X	1	3	5	7	8	10
Y	8	12	15	17	18	20

b) Find the rank correlation coefficient from the following data.

$$
\begin{array}{llllll}
\mathrm{X} & 10 & 12 & 15 & 14 & 19 \\
\mathrm{Y} & 40 & 41 & 48 & 60 & 50
\end{array}
$$

Unit - V
Q.5. a) Explain the following terms:
i) Testing hypothesis
ii) Alternative hypothesis
b) Show that in a 2×2 contingency table

$$
\begin{array}{l|l}
a & b \\
\hline c & d \\
x^{2}=\frac{(a+b+c+d)(a d-b c)^{2}}{(a+b)(c+d)(b+d)(a+c)}
\end{array}
$$

