\qquad

W-3316

M.A./M.Sc. (Fourth Semester) Examination, June-2020 MATHEMATICS
 Paper - 410
 Advanced Mathematical Statistics

Time : Three Hours

Maximum Marks : 85 (For Regular)
Minimum Pass Marks : 29
Maximum Marks : 100 (For Private)
Note : Attempt all questions. Minimum Pass Marks : 34
Unit - I
Q.1. Fit a second degree parabola to the data given below:
$\begin{array}{lllllll}x & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0\end{array}$
3.5
$\begin{array}{lllllll}y & 2 & 6 & 12 & 20 & 30 & 42\end{array}$
56

Unit - II
Q.2. State and prove Baye's theorem. For the rectangular distribution $y=\frac{1}{2 a}$, where $-a \leq x \leq a$, show that the moment generating function about origin zero is given by $\frac{1}{a t \sinh a t}$. Also show that $\mu_{2 n}=\frac{a^{2 n}}{(2 n+1)}$.

Unit - III
Q.3. If T_{1} and T_{2} be the two unbiased estimation of $\gamma(\theta)$ with variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ and correlation ρ. What is the best unbiased linear combination of T_{1} and T_{2} and what is the variance of such a combination?

Unit - IV

Q.4. Define t -distribution and show that as $v \rightarrow \infty$,
$\frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{v}} \frac{\sqrt{\frac{v+1}{2}}}{\sqrt{\frac{v}{2}}} \frac{1}{\left(1+\frac{t^{2}}{v}\right) \frac{v+1}{2}} \rightarrow \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$

Unit - V

Q.5. Explain Randomised block design and carry out its statistical analysis for one observations per experimental unit.

