\qquad

W-3316(A)
 M.A./M.Sc. (Fourth Semester) Examination, (Second Chance) June-2020
 MATHEMATICS

Paper - 410
Advanced Mathematical Statistics
Time : Three Hours
Maximum Marks : 85
Minimum Pass Marks : 29

Note : Attempt all questions.

Unit - I

Q.1. Find the Karl Pearson's coefficient of correlation between height of fathers and sons:

Height of fathers	65	66	67	67	68	69	70	72
Height of Sons	67	68	69	68	72	72	69	71

Unit - II

Q.2. Write the standard form of probability density function of normal distribution. Prove that $\mu_{n}^{\prime}=0$ when n is odd and $\mu_{n}^{\prime}=\frac{2^{n / 2} \sigma^{n}}{\sqrt{\pi}} \sqrt{\frac{n}{2}+1 / 2}$, when n is even. Also obtain the recurrence relation $\mu_{2 n}=(2 n-1) \sigma^{2} \mu_{2 n-2}$.

Unit - III

Q.3. Let T_{1} and T_{2} be unbiased estimate of $\gamma(\theta)$ with efficiencies e_{1} and e_{2} respectively and ρ be the correlation coefficient between them. Then prove that $\sqrt{e_{1} e_{2}}-\sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)} \leq \rho \leq \sqrt{e_{1} e_{2}}+\sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)}$.

[2]

Unit - IV

Q.4. The outputs of two machines A and B are given

Hours	Machine A	Machine B
1	12	10
2	8	12
3	15	12
4	8	7
5	16	16
6	20	22
7	18	20
8	19	10
9	15	12
10	27	25
11	11	16
12	24	21
13	17	17
14	19	15
15	13	17
16	9	10
17	11	10
18	26	7

Test the null hypothesis that the output of Machine A is same as Machine B .

Unit - V

Q.5. The following table gives the yield of wheat per acre for trial plotes treated with four different levels of fertilizer. Each level was applied to 5 plots randomly chosen over a field.

	Treatment			
Plot No.	I	II	III	IV
1	21	24	34	40
2	25	33	26	47
3	31	34	38	39
4	17	39	32	41
5	26	35	35	33

Carryout one way analysis of variance and state your conclusion,
Given, $\mathrm{F}(3,16)$ at 5% level of significance $=3.24$.

