\qquad

W-3311(A)
 M.A./M.Sc.(Fourth Semester) Examination, (Second Chance) June-2020
 MATHEMATICS
 Paper - 401
 Partial Differential Equation
 Time : Three Hours
 Maximum Marks : 85
 Minimum Pass Marks : 29

Note : Attempt All questions.

Unit-I

Q.1. Solve $p^{2} x+q^{2} y=z$ by Charpit's methods.

Unit-II

Q.2. Explain all types of boundary value problems.

Unit-III

Q.3. Solve the following Neumann problem for a rectangle.

PDE: $\nabla^{2} u(x, y)=00 \leq x \leq a, 0 \leq y \leq b$
$B C^{\prime} s: u_{x}(0, y)=u_{x}(a, y)=0$
$u_{y}(x, 0)=0, u_{y}(x, b)=f(x)$

Unit-IV

Q.4. Solve the PDE
$\frac{\partial T}{\partial t}(x, t)=\alpha \frac{\partial^{2} T}{\partial x^{2}}(x, t)$
With

$$
B C s: T(0, t)=0, \frac{\partial T}{\partial x}(L, t)=q_{0}
$$

\& ICs:T($x, 0)=0,0 \leq x \leq L$

Unit-V

Q.5. Derive D-Alembert solution for wave equation.

