NUMBER SYSTEM

1. Binary Number
2. Decimal Number
3. Octal Number
4. Hexa Decimal Number

BINARY NUMBER

The binary number system, also called the base-2 number system, is a method of representing numbers that counts by using combinations of only two numerals: zero (0) and one (1). Computers use the binary number system to manipulate and store all of their data including numbers, words, videos, graphics, and music.

DECIMAL NUMBER

Decimal is a term that describes the base-10 number system, probably the most commonly used number system. The decimal number system consists of ten single- digit numbers:
0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

OCTAL NUMBER

The octal numeral system, or oct for short, is the base- 8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three

HEXA DECIMAL NUMBER

In mathematics and computing, hexadecimal (also base 16, or hex) is a positional system that represents numbers using a base of 16. Unlike the common way of representing numbers with ten symbols, it uses sixteen distinct symbols, most often the symbols " 0 ""9" to represent values zero to nine, and "A""F" (or alternatively "a"-"f") to represent values ten to fifteen.

BINARY TO DECIMAL CONVERSION

Rinary Number 11101_{2}
Calculating Decimal Equivalent -

Step	Binary Number	Decimal Number
Slep 1	11101_{2}	$\left(\left(1 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)\right)_{10}$
Step 2	11101_{2}	$(16+8+4+0+1) 10$
Step 3	11101_{2}	29_{10}

Binary Number: $11101_{2}-$ Decımal Number: 29_{10}

DECIMAL TO BINARY CONVERSION

Step 2 - Convert Decimal to Binary

Step	Operation	Result	Remainder
Step 1	$21 / 2$	10	1
Step 2	$10 / 2$	5	0
Step 3	$5 / 2$	2	1
Step 4	$2 / 2$	1	0
Step 5	$1 / 2$	0	1

Decimal Number : $21_{10}=$ Binary Number : 10101_{2}

OCTAL TO BINARY CONVERSION

Octal Number : 258
Calculating Binary Equivalent -
Step 1 - Convert to Decimal

Step	Octal Number	Decimal Number
Step 1	25_{8}	$\left(\left(2 \times 8^{1}\right)+\left(5 \times 8^{0}\right)\right)_{10}$
Step 2	25_{8}	$(16+5)_{10}$
Step 3	25_{8}	21_{10}

Octal Number : $25_{8}=$ Decimal Number : 21_{10}

Step 2 - Convert Decimal to Binary

Step	Operation	Result	Remainder
Step 1	$21 / 2$	10	1
Step 2	$10 / 2$	5	0
Step 3	$5 / 2$	2	1
Step 4	$2 / 2$	1	0
Step 5	$1 / 2$	0	1

Decimal Number : $21_{10}=$ Binary Number : 10101_{2}
Octal Number : $25_{8}=$ Binary Number : 10101_{2}

HEXA DECIMAL TO BINARY CONVERSION

Hexadecimal Number: 1516
Calculating Binary Equivalent -

Step	Hexadecimal Number	Binary Number
Step 1	15_{16}	$1_{10} 5_{10}$
Step 2	15_{16}	$0001_{2} 0101_{2}$
Step 3	15_{16}	00010101_{2}

Hexadecimal Number : $15_{16}=$ Binary Number : 10101_{2}

