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We’ve seen that the radiation reaction force is given by the Abraham-

Lorentz formula

Frad =
µ0q

2

6πc
ȧ (1)

Griffiths gives a derivation of this formula in his section 11.2.3 by con-
sidering a charge q split into a dumbbell of length d with its axis in the
y direction moving along the x axis. A half-charge q/2 is at each end of
the dumbbell, and the idea is that as the dumbbell moves along the x axis,
each charge feels a force due to the fields emitted at the retarded time tr
by both the charge itself and the charge at the other end of the dumbbell.
Griffiths’s derivation, however, is for the special case where the dumbbell
is momentarily at rest at the retarded time, which simplifies the calcula-
tions significantly. Here, we’ll run through the derivation when the retarded
velocity is not zero.

Due to the immense amount of algebra involved in this derivation, it
makes sense to use Maple to do the calculations. However, even using
Maple, the process is far from simple, so this post will be as much a tutorial
on how to solve problems like this with Maple as it is on physics.

We start with the electric field due to a moving charge

E(r, t) =
qr

4πε0 (r ·u)3

[(
c2−v2)u+ r× (u×a)

]
(2)

where

u = cr̂−v (3)

and r is the vector from the source charge at the retarded time to the desti-
nation charge at the current time.

If the dumbbell has moved a distance l along the x axis since the retarded
time tr, then if we’re considering the field felt by a charge q/2 at one end of
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the dumbbell due to the charge at the other end emitted at the retarded time,
we have

r =
√
l2 +d2 (4)

r = lx̂+dŷ (5)

Since all motion is along the x axis, we have

r ·u = cr− lv (6)
r ·a = la (7)

ux =
cl

r
−v (8)

r× (u×a) = u(r ·a)−a(r ·u) (9)
= lau− (cr− lv)a (10)

We’ll refer to the top charge as charge 1 and the bottom charge as charge
2. From symmetry, the y component of u for the field due to charge 1 felt
by charge 2 is equal and opposite to the same component for the field due
to charge 2 felt by charge 1, so when added together, they cancel, and we
need consider only the x component in what follows.

We can also ignore the magnetic forces since the magnetic field of a mov-
ing point charge is

B(r, t) =
1
c
r̂×E(r, t) (11)

Both E and r lie in the xy plane, so

B = (r̂xEy− r̂yEx) ẑ (12)
For charge 2, both Ey and r̂y are the negative of their counterparts for

charge 1, while Ex and r̂x are the same for both charges, so the magnetic
field cancels out when added for the two charges.

Plugging in the above results and taking the x component we get for
charge 1 (which is q/2) [I’ll use r instead of r in what follows since it’s
easier to type.]

Ex =
q

8πε0c3
r(

r− lv
c

)3

[(
cl

r
−v
)(

c2

γ2 + la

)
−ac

(
r− lv

c

)]
(13)

where γ ≡ 1/
√

1−v2/c2.
What we want is an expansion of Ex as a power series in d, the distance

between the charges (length of the dumbbell). In the process, we want to
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eliminate l and r from the expression. To do this, we first write things in
terms of the time elapsed since the retarded time:

T ≡ t− tr (14)

First, we can expand the position

x(t) = x(tr)+v (tr)T +
1
2!
a(tr)T

2 +
1
3!
ȧ(tr)T

3 + . . . (15)

The distance travelled is l = x(t)−x(tr) so (dropping the dependence
on tr; until further notice, v, a and ȧ are all assumed to be at the retarded
time):

l = vT +
a

2
T 2 +

ȧ

6
T 3 (16)

How do we know how many terms to keep in this expansion? Ultimately,
we’re interested in taking the limit as d→ 0, so we’re looking for the con-
stant term in the series expansion of 13. We know the final formula involves
terms up to ȧ so as a rule of thumb, we keep terms up to that point.

Things seem to be getting worse, in that we’ve introduced another pa-
rameter T , which we now need to get rid of. We note that T is the time
taken for a signal to travel from charge 1 at the retarded time to charge 2 at
the present time, so

c2T 2 = r2 = l2 +d2 (17)

=

(
vT +

a

2
T 2 +

ȧ

6
T 3
)2

+d2 (18)

= d2 +v2T 2 +avT 3 +

(
vȧ

3
+
a2

4

)
T 4 (19)

c2

γ2T
2 = d2 +avT 3 +

(
vȧ

3
+
a2

4

)
T 4 (20)

Again, we’ve kept powers of T only up until the first term containing ȧ.
Now we express T as a series in powers of d:

T = A0 +A1d+A2d
2 +A3d

3 (21)

By trial and error, we find that we need up to the cubic term to include
a term with ȧ. We can now substitute this into 20 and equate powers of d
on both sides. This is where it’s useful to bring in Maple. We can use the
command:
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[code]
dist := c^2*T^2/gamma^2 = d^2+v*T^3*a+(1/3)*v*T^4*A+(1/4)*a^2*T^4;
Teq := subs(T = A__3*d^3+A__2*d^2+A__1*d+A__0, dist);
simplify(zip(`=`,
[coeffs(select(t -> degree(t, d) <= 4, lhs(expand(Teq))), d)],
[coeffs(select(t -> degree(t, d) <= 4, rhs(expand(Teq))), d)]));

As := solve(Tcoeffs, {A__0, A__1, A__2, A__3});
assign(As[1]);
[/code]

This Maple code defines an equation called ’dist’ that is equivalent o 20,
then substitutes 21 into it. The next command selects all the coefficients
from terms with degree of d less than or equal to 4 from the LHS and RHS
of the expanded equation and applies the = operator between each pair. We
then call solve to solve for the values of the Ai. The final assign assigns
the Ais to the values found by solve. (The [1] means to take the first set of
solutions; there are actually two sets of solutions but the second set contains
negative values so we discard it.) The results are

A0 = 0 (22)

A1 =
γ

c
(23)

A2 =
avγ4

c4 (24)

A3 =
γ5

24c7

(
15a2γ2v2 +4ȧvc2 +3a2c2) (25)

=
γ5

24c7

(
4ȧvc2 +3a2γ2 (c2 +4v2)) (26)

We can now plug these values back into 21 and then into 16 to get an
expansion for l. Keeping only terms up to the first occurrence of ȧ we use
the Maple code

[code]
l := select(t -> degree(t, d) < 4, collect(expand(l), d));
l__2 := simplify(subs(gamma = 1/sqrt(1-v^2/c^2), coeff(l, d, 2)));
l__3 := simplify(subs(gamma = 1/sqrt(1-v^2/c^2), coeff(l, d, 3)));
l__3 := simplify(subs(c^2-v^2 = c^2/gamma^2, l__3));
[/code]

We also do a few tweaks and substitutions by hand to convert a few c2−v2

terms into γ terms until we get the result
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l =
γv

c
d+

γ4a

2c2 d
2 +

γ5

24c5

(
15a2γ2v+4ȧc2)d3 (27)

Since we’ve now got l as a series in d, we can use it to find expansions of
the other factors in 13.

For r we get in Maple
[code]
r__s := series(r, d, 4);
r__1 := simplify(subs(gamma = 1/sqrt(1-v^2/c^2), coeff(r__s, d, 1)));
r__2 := simplify(subs(gamma = 1/sqrt(1-v^2/c^2), coeff(r__s, d, 2)));
r__2 := simplify(subs(c^2-v^2 = c^2/gamma^2, r__2));
r__3 := simplify(subs(gamma = 1/sqrt(1-v^2/c^2), coeff(r__s, d, 3)));
r__3 := simplify(subs(c^2-v^2 = c^2/gamma^2, r__3));
[/code]

With a few more simplify commands, we get

r = γd+
γ4va

2c3 d2 +
γ5 (3a2c2γ2 +12a2γ2v2 +4 ȧc2v

)
24c6 d3 (28)

The other terms in 13 can be worked out similarly by using Maple’s se-
ries command together with a few simplifys:

cl

r
−v = γa

2c
d+

γ2

12c4

(
3a2γ2v+2ȧc2)d2 (29)

c2

γ2 + la=
c2

γ2 +
vaγ d

c
+
γ4a2d2

2c2 +

(
15a3γ2v+4aȧc2)γ5d3

24c5 (30)

r− lv
c
=
γ
(
c2−v2)
c2 d+

γ7a2 (c2−v2)
8c6 d3 (31)(

r− lv
c

)−3

=
γ3

d3 −3/8
γ9a2

c4d
+

3γ15a4d

32c8 (32)

Now we can put everything together to find Ex:
[code]
clrv := simplify(series(c*l/r-v, d, 5));
clrv__1 := coeff(clrv, d, 1);
clrv__1 := simplify(subs(gamma = 1/sqrt(1-v^2/c^2), clrv__1));
clrv__2 := simplify(subs(gamma = 1/sqrt(1-v^2/c^2), coeff(clrv, d, 2)));
clrv__2 := simplify((2*A*c^2/gamma^2+3*a^2*v)/(12*c^4/gamma^4));
clrv := clrv__2*d^2+clrv__1*d;
cgla := c^2/gamma^2+l*a;
rlvc := simplify(series(r-l*v/c, d, 4));
rlvc := simplify(subs(c^2-v^2 = c^2/gamma^2, rlvc));
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rlvc := convert(rlvc, polynom);
n__1 := collect(expand(clrv*cgla), d);
n__2 := n__1-a*c*rlvc+n__1;
n__3 := select(t -> degree(t, d) < 4, collect(n__2, d));
d__1 := series(1/rlvc^3, d, 4);
d__1 := convert(d__1, polynom);
E := q*select(t -> degree(t, d) < 1, collect(r*n__3*d__1, d))/(8*Pi*epsilon__0*c^3);
[/code]

In the last line, we select only those terms of degree less than 1 in d, since
we’re interested only in terms that don’t vanish as d→ 0. After a final
simplify we get

Ex =−
γ3aq

16πε0c2
1
d
+
qγ4 (3a2γ2v+Ac2)

48c5πε0
(33)

The net force is 2× (q/2)Ex since there is a force from both q/2 charges
at the retarded time. Thus

Fx =−
γ3aq2

16πε0c2
1
d
+
q2γ4 (3a2γ2v+Ac2)

48c5π ε0
(34)

Somewhat embarrassingly, the first term blows up as d → 0, but it is
moved over to the LHS and incorporated as part of the particle’s mass in a
process called ’renormalization’ (basically physics-speak for ’fudge’). This
leaves the last term as the actual reaction force from one charge on the other.

To convert everything to the current time, we can use some more expan-
sions (where a subscript t indicates current time):

v = vt+ v̇t (tr− t) = vt−atT (35)
a = at− ȧtT (36)

We take only up to first order terms in T , since the ’worst’ power of d in
Fx is d−1, so a first order correction multiplied into a d−1 term will give an
adjustment to the constant term, which is the term of interest. We need to
transform not only the bare a and v terms in the force, but also the γ factor,
since it depends on v. In Maple, we get (I use A to represent ȧ in the Maple
code):

[code]
E__0 := simplify(coeff(E, d, 0));
E__0t := subs({a = -A__t*T+a__t, v = -T*a__t+v__t}, subs(gamma = 1/sqrt(1-v^2/c^2), E__0));
E__0ts := series(E__0t, d, 1);
simplify(E__0ts);
E__m1 := simplify(coeff(E, d, -1));
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E__m1t := subs({a = -A__t*T+a__t, v = -T*a__t+v__t}, subs(gamma = 1/sqrt(1-v^2/c^2), E__m1));
E__m1ts := series(E__m1t, d, 2);
E__m1ts := simplify(subs(c^2-v__t^2 = c^2/gamma^2, E__m1ts));
E__t := simplify(coeff(E__0ts, d, 0)+coeff(E__m1ts, d, 1));
E__t := simplify(subs(c^2-v__t^2 = c^2/gamma^2, E__t));
[/code]

We isolate the constant (d0) coefficient from 33, substitute for γ and trans-
form a and v and then do the same for the d−1 coefficient. The final result
for the field is the sum of the order d term from the coefficient of d−1 (since
the ds cancel out to give a constant term) plus the order d0 term from the
coefficient of d0. The final result is

Et =
qγ4 (c2ȧt+12at2γ2vt+3 ȧt c2)

48c5π ε0
(37)

Ft =
q2γ4 (c2ȧt+12at2γ2vt+3 ȧt c2)

48c5π ε0
(38)

=
q2γ4

12πε0c3

(
ȧt+

3a2
tγ

2vt
c2

)
(39)

=
µ0q

2γ4

12πc

(
ȧt+

3a2
tγ

2vt
c2

)
(40)

When the force of each end on itself is included, this doubles the answer,
so we get

F =
µ0q

2γ4

6πc

(
ȧt+

3a2
tγ

2vt
c2

)
(41)
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