### **Common terms of significance**

# Deepa Anwar

#### Hypothesis Testing with One Sample

#### Introduction to Hypothesis Testing

#### Hypothesis Tests

A hypothesis test is a process that uses sample statistics to test a claim about the value of a population parameter.

If a manufacturer of rechargeable batteries claims that the batteries they produce are good for an average of at least 1,000 charges, a sample would be taken to test this claim.

A verbal statement, or claim, about a population parameter is called a statistical hypothesis.

To test the average of 1000 hours, a pair of hypotheses are stated – one that represents the claim and the other, its complement. When one of these hypotheses is false, the other must be true.

### Stating a Hypothesis

\_"H subzero" or "H naught"

A null hypothesis  $H_0$  is a statistical hypothesis that contains a statement of equality such as  $\leq$ , =, or  $\geq$ .

A alternative hypothesis  $H_a$  is the complement of the null hypothesis. It is a statement that must be true if  $H_0$  is false and contains a statement of inequality such as >,  $\neq$ , or <.

'H sub-a"

To write the null and alternative hypotheses, translate the claim made about the population parameter from a verbal statement to a mathematical statement.

## Stating a Hypothesis

#### Example:

Write the claim as a mathematical sentence. State the null and alternative hypotheses and identify which represents the claim.

A manufacturer claims that its rechargeable batteries have an average life of at least 1,000 charges.



## Stating a Hypothesis

#### Example:

Write the claim as a mathematical sentence. State the null and alternative hypotheses and identify which represents the claim.

Statesville college claims that 94% of their graduates find employment within six months of graduation.

$$p = 0.94$$

$$H_0: p = 0.94 \quad (Claim)$$

$$H_a: p \neq 0.94$$

$$Complement of the null hypothesis$$

## Types of Errors

No matter which hypothesis represents the claim, always begin the hypothesis test **assuming that the null hypothesis is true**.

At the end of the test, one of two decisions will be made:

- 1. reject the null hypothesis, or
- 2. fail to reject the null hypothesis.

A type I error occurs if the null hypothesis is rejected when it is true.

A type II error occurs if the null hypothesis is not rejected when it is false.

Types of Errors

|                     | Actual Truth of H <sub>o</sub> |                         |
|---------------------|--------------------------------|-------------------------|
| Decision            | H <sub>0</sub> is true         | H <sub>0</sub> is false |
| Do not reject $H_0$ | Correct Decision               | Type II Error           |
| Reject $H_0$        | Type I Error                   | Correct Decision        |

#### Types of Errors Example:

Statesville college claims that 94% of their graduates find employment within six months of graduation. What will a type I or type II error be?

H<sub>0</sub>: 
$$p = 0.94$$
 (Claim)  
H<sub>a</sub>:  $p \neq 0.94$ 

A type I error is rejecting the null when it is true. The population proportion is actually 0.94, but is rejected. (We believe it is not 0.94.)

A type II error is failing to reject the null when it is false. The population proportion is not 0.94, but is not rejected. (We believe it is 0.94.)

### Level of Significance

In a hypothesis test, the level of significance is your maximum allowable probability of making a type I error. It is denoted by  $\alpha$ , the lowercase Greek letter alpha.

The probability of making a type II error is denoted by  $\beta$ , the lowercase Greek letter beta.

By setting the level of significance at a small value, you are saying that you want the probability of rejecting a true null hypothesis to be small.

Commonly used levels of significance:

 $\alpha = 0.10$   $\alpha = 0.05$   $\alpha = 0.01$ 

#### **Statistical Tests**

After stating the null and alternative hypotheses and specifying the level of significance, a random sample is taken from the population and sample statistics are calculated.

The statistic that is compared with the parameter in the null hypothesis is called the **test statistic**.

| Population<br>parameter | Test statistic | Standardized test statistic |  |
|-------------------------|----------------|-----------------------------|--|
| μ                       | $\overline{X}$ | z (n≥30)<br>t (n<30)        |  |
| p<br>Z                  | $\hat{p}$      | Z<br>V2                     |  |
| p<br>$\sigma^2$         | $p \\ s^2$     | Z<br>X <sup>2</sup>         |  |

### **P**-values

If the null hypothesis is true, a *P*-value (or probability value) of a hypothesis test is the probability of obtaining a sample statistic with a value as extreme or more extreme than the one determined from the sample data.

The *P*-value of a hypothesis test depends on the nature of the test.

There are three types of hypothesis tests – a left-, right-, or two-tailed test. The type of test depends on the region of the sampling distribution that favors a rejection of  $H_0$ . This region is indicated by the alternative hypothesis.

#### Left-tailed Test

 If the alternative hypothesis contains the less-than inequality symbol (<), the hypothesis test is a left-tailed test.

 $H_0: \mu \ge k$  $H_a: \mu < k$ 



### **Right-tailed Test**

2. If the alternative hypothesis contains the greater-than symbol (>), the hypothesis test is a **right-tailed test**.



### **Two-tailed Test**

3. If the alternative hypothesis contains the not-equal-to symbol ( $\neq$ ), the hypothesis  $\frac{1}{2}$  test is a two-tailed test. In a two-tailed test, each tail has an area of P.





# Identifying Types of Tests

#### Example:

For each claim, state  $H_0$  and  $H_a$ . Then determine whether the hypothesis test is a left-tailed, right-tailed, or two-tailed test.

a.) A cigarette manufacturer claims that less than oneeighth of the US adult population smokes cigarettes.  $H_0: p \ge 0.125$ 

 $H_a: p < 0.125$  (Claim)

↓ Left-tailed test

b.) A local telephone company claims that the average length of a phone call is 8 minutes.

 $H_0: \mu = 8$  (Claim)

 $H_a: \mu \neq 8$  Two-tailed test

### Making a Decision

Decision Rule Based on P-value

To use a *P*-value to make a conclusion in a hypothesis test, compare the *P*-value with  $\alpha$ .

1. If  $P \leq \alpha$ , then reject  $H_0$ .

2. If  $P > \alpha$ , then fail to reject  $H_0$ .

|                           | Claim                                                |                                                       |
|---------------------------|------------------------------------------------------|-------------------------------------------------------|
| Decision                  | Claim is $H_0$                                       | Claim is H <sub>a</sub>                               |
| ${\rm Reject}\ {\rm H}_0$ | There is enough evidence to reject the claim.        | There is enough evidence to support the claim.        |
| Do not reject $H_0$       | There is not enough evidence<br>to reject the claim. | There is not enough evidence<br>to support the claim. |

### Interpreting a Decision

#### Example:

You perform a hypothesis test for the following claim. How should you interpret your decision if you reject  $H_0$ ? If you fail to reject  $H_0$ ?

 $H_0$ : (Claim) A cigarette manufacturer claims that less than one-eighth of the US adult population smokes cigarettes.

If  $H_0$  is rejected, you should conclude "there is sufficient evidence to indicate that the manufacturer's claim is false."

If you fail to reject  $H_0$ , you should conclude "there is *not* sufficient evidence to indicate that the manufacturer's claim is false."

## **Steps for Hypothesis Testing**

- 1. State the claim mathematically and verbally. Identify the null and alternative hypotheses.
- 2. Specify the level of significance.

 $\alpha = ?$ 

3. Determine the standardized sampling distribution and draw its graph.

4. Calculate the test statistic and its standardized value. Add it to your sketch.



Continued.

## Steps for Hypothesis Testing

- 5. Find the *P*-value.
- 6. Use the following decision rule.



These steps apply to left-tailed, right-tailed, and two-tailed tests.