Biostatistics

Boolean Algebra

:Deepa Anwar

Introduction :

Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. o and 1. It is also called as **Binary Algebra** or **logical Algebra**. Boolean algebra was invented by **George Boole** in 1854.

Rule in Boolean Algebra:

Following are the important rules used in Boolean algebra.

•Variable used can have only two values. Binary 1 for HIGH and Binary 0 for LOW.

•Complement of a variable is represented by an overbar (-). Thus, complement of variable B is represented as \overline{B} . Thus if B = 0 then \overline{B} = 1 and B = 1 ther \overline{B} = 0.

•ORing of the variables is represented by a plus (+) sign between them. For example ORing of A, B, C is represented as A + B + C.

•Logical ANDing of the two or more variable is represented by writing a dot between them such as A.B.C. Sometime the dot may be omitted like ABC.

Boolean Laws:

There are six types of Boolean Laws.

1.Commutative law:

Any binary operation which satisfies the following expression is referred to as commutative operation.

(i) A.B = B.A (ii) A + B = B + A

Commutative law states that changing the sequence of the variables does not have any effect on the output of a logic circuit.

2.Associative law:

This law states that the order in which the logic operations are performed is irrelevant as their effect is the same.

(i) (A.B).C = A.(B.C) (ii) (A + B) + C = A + (B + C)

<u>3.Distributive law</u> Distributive law states the following condition.

$$A.(B + C) = A.B + A.C$$

4.AND law

These laws use the AND operation. Therefore they are called as **AND** laws. (i) A.0 = 0 (ii) A.1 = A

5.OR law(iii) A.A = A(iv) $A.\overline{A} = 0$ These laws use the OR operation. Therefore they are
called as **OR** laws.
(i) A+0=A(ii) A+1=1

(iii) A + A = A (iv) $A + \overline{A} = 1$

6.INVERSION law

This law uses the NOT operation. The inversion law states that double inversion of a variable results in the original variable itself. $\overline{\overline{A}}_{=A}$