
Occurrence of Diffusion Equation
1-D Heat Equation
In a metal rod with non-uniform temperature, thermal energy (i.e. Heat) will flow from the high 
temperature region to the relatively low temperature region by the process of Diffusion. To 
formulate the heat flow problem, we need the following three physical principles:

• Heat energy (E) of an uniform body
𝐸 = 𝑐𝑚𝑇

Where c is the specific heat of the body, m is the mass of the body and T is the temperature.

• Fourier’s Law of Heat transfer:
𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝐴𝑟𝑒𝑎
= −𝐾0

𝜕𝑇

𝜕𝑥

Where 𝐾0 is the thermal conductivity. In other words, heat is transferred from the high temperature 
region to the low temperature region.

• Conservation of Energy.

Now, consider a uniform rod of length 𝑙 with an uniform temperature lying on the 𝑥-axis from 𝑥 = 0
to 𝑥 = 𝑙. Uniformity means specific heat, density, conductivity and cross section area are constant.



Let an heat source is placed on the one end of the rod, and consider an arbitrary thin slice of the 
rod of width ∆𝑥 between 𝑥 and x + ∆𝑥. The slice is so thin that the temperature throughout the 
slice is 𝑇(𝑥, 𝑡). Thus,

𝐻𝑒𝑎𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 ∆𝑥 = 𝑐 × 𝜌𝐴∆𝑥 × 𝑇 𝑥, 𝑡 = 𝑐𝜌𝐴∆𝑥𝑇(𝑥, 𝑡)

Where 𝜌 is the density of the rod and 𝐴 is the area of cross-section.

Now, by conservation of energy, we have 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑒𝑔𝑒𝑚𝑒𝑛𝑡 ∆t
= heat in from left boundary − heat out from right boundary

Or

𝑐𝜌𝐴∆𝑥𝑇 𝑥, 𝑡 + ∆𝑡 − 𝑐𝜌𝐴∆𝑥𝑇 𝑥, 𝑡 = ∆𝑡𝐴 −𝐾0
𝜕𝑇

𝜕𝑥
𝑥

−∆𝑡𝐴 −𝐾0
𝜕𝑇

𝜕𝑥
𝑥+∆𝑥

Or

𝑇 𝑥, 𝑡 + ∆𝑡 − 𝑇 𝑥, 𝑡

∆𝑡
=
𝐾0
𝑐𝜌

𝜕𝑇
𝜕𝑥 𝑥+∆𝑥

−
𝜕𝑇
𝜕𝑥 𝑥

∆𝑥

On taking limits ∆𝑥 → 0, ∆𝑡 → 0, we get
𝜕𝑇

𝜕𝑡
=
𝐾0
𝑐𝜌

𝜕2𝑇

𝜕𝑥2



• The above partial differential equation is called 1-D Heat equation. This equation is applicable on 
whole rod as the slice was chosen arbitrarily. 

Initial and the Boundary Conditions for 1-D heat equation

• Initial condition (IC):  the initial temperature distribution in the rod 𝑇 𝑥, 0 .

• Boundary Condition (BC): Specifying the temperature at the end of the rod. For instance, standard 
BCs for the end 𝑥 = 0 can be given by following expression:

I. Temperature Prescribed at a boundary. For 𝑡 > 0, 𝑇 0, 𝑡 = 𝑇1 𝑡 .

II. Insulated boundary. The heat flow can be prescribed at the boundaries, −K0
𝜕𝑇

𝜕𝑥
0, 𝑡 =

𝜙1 𝑡 .

III. Mixed conditions. An equation involving 𝑇 0, 𝑡 ,
𝜕𝑇

𝜕𝑥
0, 𝑡 , 𝑒𝑡𝑐.



Example

Consider a rod of length 𝑙 with insulated sides is given an initial temperature distribution of 𝑓(𝑥)
degree C, for 0 < 𝑥 < 𝑙. Find 𝑇(𝑥, 𝑡) at subsequent times 𝑡 > 0 if end of rod are kept at 0𝑜 C.

Mathematical Formulation of the problem:

PDE:
𝜕𝑇

𝜕𝑡
=
𝐾0
𝑐𝜌

𝜕2𝑇

𝜕𝑥2
, 𝑓𝑜𝑟 0 < 𝑥 < 𝑙

IC:
𝑇 𝑥, 0 = 𝑓 𝑥 , 𝑓𝑜𝑟 0 < 𝑥 < 𝑙

BC:
𝑇 0, 𝑡 = 𝑇 𝑙, 𝑡 = 0, 𝑓𝑜𝑟 𝑡 > 0



Extension to Higher Dimensions: 3D Heat 
Equation
• Let 𝑉 be an arbitrary 3D-domain bounded by a closed surface 𝑆 and let ത𝑉 = 𝑉 ∪ 𝑆, that is domain 
𝑉 including the enclosing surface 𝑆. Let 𝑇 𝑥, 𝑦, 𝑧, 𝑡 be the temperature at any point 𝑥, 𝑦, 𝑧 at 
time 𝑡 in ത𝑉.

• Heat flow is from high heat region to relatively low heat region. In this case, it is governed by the 
following 3D-Fourier’s law

𝑞 𝑟, 𝑡 = −𝐾𝛻𝑇(𝑟, 𝑡)

Where 𝑞 𝑟, 𝑡 is the heat flux at time 𝑡 at point (𝑥, 𝑦, 𝑧) represented by the position vector 𝑟, and 𝐾
is the thermal conductivity. 

• If ො𝑛 be the outward normal vector to an infinitesimally small element 𝑑𝑆 of the enclosing surface 
𝑆, then the heat flowing out through the elemental surface 𝑑𝑆 in unit time is given by 

𝑑𝑄 = 𝑞. ො𝑛 𝑑𝑆

• The amount of heat 𝑑𝑄 needed to raise the temperature of the elemental mass 𝑑𝑚 = 𝜌𝑑𝑉 to the 
value 𝑇 is given by 𝑑𝑄 = C𝜌𝑇𝑑𝑉, where 𝐶 is the specific heat of the solid. Therefore, on 
integrating over volume, we get

𝑄 =ම

𝑉

𝐶𝜌𝑇𝑑𝑉



Or, 

𝑑𝑄

𝑑𝑡
=ම

𝑉

𝐶𝜌
𝜕𝑇

𝜕𝑡
𝑑𝑉

• Now, on balancing in and out heat: The rate of energy storage in 𝑉 is equal to the sum of the rate 
of heat entering 𝑉 through its bounding surface and the heat produced within 𝑉. We get

ම

𝑉

𝐶𝜌
𝜕𝑇

𝜕𝑡
𝑟, 𝑡 𝑑𝑉 = −ඵ

𝑆

𝑞. ො𝑛𝑑𝑆 + ම

𝑉

𝐻(𝑟, 𝑇, 𝑡)𝑑𝑉

Where 𝐻 𝑟, 𝑇, 𝑡 is the heat generated within solid following mechanical and chemical reactions.

• By the divergence theorem, we can write

ම

𝑉

𝐶𝜌
𝜕𝑇

𝜕𝑡
𝑟, 𝑡 + 𝛻. 𝑞 𝑟, 𝑡 − 𝐻(𝑟, 𝑇, 𝑡) 𝑑𝑉 = 0

Or, 

𝐶𝜌
𝜕𝑇

𝜕𝑡
𝑟, 𝑡 = −𝛻. 𝑞 𝑟, 𝑡 + 𝐻 𝑟, 𝑇, 𝑡 = −𝛻. 𝐾𝛻𝑇 𝑟, 𝑡 + 𝐻(𝑟, 𝑇, 𝑡)



• Further simplification leads to
1

𝛼

𝜕𝑇

𝜕𝑡
𝑟, 𝑡 = 𝛻2𝑇 𝑟, 𝑡 +

1
𝐾
𝐻 𝑟, 𝑇, 𝑡

Where 𝛼 = 𝐾/𝜌𝐶 is the thermal diffusivity of the medium. Notice that in the absence of 
mechanical or chemical heat generation within the solid, we have 𝐻 𝑟, 𝑇, 𝑡 = 0, therefore in this 
case we get following 3D-heat equation:

1

𝛼

𝜕𝑇

𝜕𝑡
𝑟, 𝑡 = 𝛻2𝑇 𝑟, 𝑡

Boundary Conditions (BCs)
I. Boundary Condition-I: Temperature is prescribed all over the boundary surface : 𝑇 =

𝐺 𝑟, 𝑡 which is the profile of temperature over the boundary surface at time 𝑡 this type of 
condition is called the Drichlet’s boundary condition. Special case T 𝑟, 𝑡 = 0 is called the 
homogeneous boundary condition.

II. Boundary Condition-II: The flux of heat, i.e. the normal derivative of the temperature Τ𝜕𝑇 𝜕𝑛is 
prescribed on the boundary surface: Τ𝜕𝑇 𝜕𝑛 = 𝑓(𝑟, 𝑡) . This is called the Neumann condition. 
Again the special case Τ𝜕𝑇 𝜕𝑛 = 0, i.e. 𝑇 is time dependent only, is called the homogenous 
boundary condition.



III.  Boundary Condition-III: It is a mixed type condition. A linear combination of the temperature 
and its normal derivative is prescribed on the boundaries, i.e., 

𝐾
𝜕𝑇

𝜕𝑛
+ ℎ𝑇 = 𝐺(𝑟, 𝑡)

Where ℎ and 𝐾 are constants. This type of boundary condition is called the Robin’s condition.

Again, we can write the homogeneous boundary conditions:

𝐾
𝜕𝑇

𝜕𝑛
+ ℎ𝑇 = 0

as a special case.


