GEOMETRIC MEAN, WEIGHTED GEOMETRIC MEAN

Geometric mean

The geometric mean of a series containing n observations is the nth root of the product of the values.

If x1, x2..., xn are observations then

$$G.M = \sqrt[n]{x_1, x_2...x_n}$$

$$= (x_1, x_2...x_n)^{1/n}$$

$$Log GM = \frac{1}{n} \log(x_1, x_2...x_n)$$

$$= \frac{1}{n} (\log x_1 + \log x_2 + ... + \log x_n)$$

$$= \frac{\sum \log x_i}{n}$$

$$GM = \text{Antilog } \frac{\sum \log x_i}{n}$$

For grouped data

$$GM = Antilog \left[\frac{\sum f \log x_i}{n} \right]$$

GM is used in studies like bacterial growth, cell division, etc.

If the weights of sorghum ear heads are 45, 60, 48,100, 65 gms. Find the Geometric mean for the following data

Weight of ear head x (g)	Log x
45	1.653
60	1.778
48	1.681
100	2.000
65	1.813
Total	8.925

Solution

Here
$$n = 5$$

GM = Antilog
$$\frac{\sum \log x_i}{n}$$
= Antilog
$$\frac{8.925}{5}$$
= Antilog 1.785
= 60.95

Grouped Data

Find the Geometric mean for the following

Weight of sorghum (x)	No. of ear head(f)
50	4
65	6
75	16
80	8
95	7
100	4

Weight of sorghum (x)	No. of ear head(f)	Log x	f x log x
50	5	1.699	8.495
63	10	10.799	17.99
65	5	1.813	9.065
130	15	2.114	31.71
135	15	2.130	31.95
Total	50	9.555	99.21

Here n= 50

$$GM = Antilog \left[\frac{\sum f \log x_i}{n} \right]$$

= Antilog
$$\left[\frac{99.21}{50}\right]$$

$$=$$
 Antilog $1.9842 = 96.43$

Solution will be like this

Continuous distribution

For the frequency distribution of weights of sorghum ear-heads given in table below.

Calculate the Geometric mean

Weights of ear heads (in g)	No of ear heads (f)
60-80	22
80-100	38
100-120	45
120-140	35
140-160	20
Total	160

Solution

Weights of ear heads (in g)	No of ear heads (f)	Mid x	Log x	f log x
60-80	22	70	1.845	40 59
80-100	38	90	1.954	74.25
100-120	45	110	2.041	91.85
120-140	35	130	2.114	73.99
140-160	20	150	2.176	43.52
Total	160			324.2

Here
$$n = 160$$

$$GM = Antilog \left[\frac{\sum f \log x_i}{n} \right]$$

= Antilog
$$\left[\frac{324.2}{160}\right]$$

$$= 106.23$$

WEIGHTED GEOMETRIC MEAN

Let x_1, x_2, x_k be the k values of the variable and w_1, w_2, w_k be as sociated weights. Then W.G.M. or G_w , called the weighted geometric mean d x_1, x_2, x_k is given by

W.G.M. or
$$G_w = \operatorname{Antilog}\left[\frac{\sum w \log x}{\sum w}\right]$$

where, W.G.M. = represents Weighted Geometric Mean $x_1, x_2, ..., x_n$ = represent the values of items

wa we it - represent the weights corresponding to the size of items to which they relate

200 x log x) = represent the total of the product of weights and lags of the size of items

Σω = represent total of weights

Illustration 12

Calculate weighted geometric mean of the following data

Size of Item	25	.003	5.72	0.46	0008
Weight	10.5	H	4	7.	- 6

Solution

	w	logx	w log x		
25	6	1.3979	6,9895		
0.003	8	3.4771	21.8168		
8.72	4	0.7574	3.0296		
0.46	7/1	1.6628	1,6396		
0.0008	6	4.9031	19.4186		
			32,8941		
Total	30	- W. W. W. W.	er -31,1059		

Weighted Geometric Mean,
$$G_p$$
 = Antilog $\left(\frac{\Sigma_{B^2} \log x}{\Sigma_{B^2}}\right)$
= Antilog $\left(\frac{-31.1059}{30}\right)$
= Antilog $\left(\frac{-1.0369}{2.9631}\right)$
= Antilog $\left(\frac{2.9631}{2.9631}\right)$

https://www.youtube.com/watch?v=VjYv0snD
 BP4