SOS in Computer Science And Applications

SOSBCA 401 Numerical Methods
Unit $2^{\text {nd }}$ Jacobi iteration method

Submited By:

Navneet Gupta

Jacobi's Iteration Method

- The jacobi method is a iterative method of solving the square system of linear equations.

Jacobi iteration

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} \sqrt{r_{2}}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n} \sqrt{x_{n}}=b_{n}
\end{gathered} \quad x^{0}=\left[\begin{array}{c}
x_{1}^{0} \\
x_{2}^{0} \\
\vdots \\
x_{n}^{0}
\end{array}\right]
$$

$$
\begin{aligned}
& x_{1}^{1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{0}-\cdots-a_{1 n} x_{n}^{0}\right) \quad x_{i}^{k+1}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right] \\
& x_{2}^{1}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{0}-a_{23} x_{3}^{0}-\cdots-a_{2 n} x_{n}^{0}\right) \\
& x_{n}^{1}=\frac{1}{a_{n n}}\left(b_{n}-a_{n 1} x_{1}^{0}-a_{n 2} x_{2}^{0}-\cdots-a_{n n-1} x_{n-1}^{0}\right)
\end{aligned}
$$

Jacobi's Iteration Method

- Example:-Solve the system of equations by Jacobi's iteration method.

$$
\begin{aligned}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

Solution:- We write the equations in the form

$$
\begin{align*}
& x=(17-y+2 z) / 20 \tag{i}\\
& y=(-18-3 x+z) / 20 \tag{ii}\\
& z=(25-2 x+3 y) / 20 \tag{iii}
\end{align*}
$$

Jacobi's Iteration Method

- We start from an approximation $x=y=z=0$.

Substituting these in the right sides of the equations (i), (ii), (iii), we get

- First iteration:

$$
x=0.85, y=-0.9, z=1.25
$$

- Putting these values again in equations (i), (ii), (iii), we obtain,
- $X=[17-(-0.9)+2(1.25)] / 20=1.02$
- $Y=[-18-3(0.85)+1.25] / 20=-0.965$
- $Z=[25-2(0.85)+3(-0.9)] / 20=1.03$

Jacobi's Iteration Method

- Substituting these values again in equations (i), (ii), (iii), we obtain,
- Second iteration:

$$
x=1.00125, y=-1.0015, z=1.00325
$$

- Proceeding in this way, we get,
- Third iteration:

$$
x=1.0004, y=-1.000025, z=0.9965
$$

Jacobi's Iteration Method

- Fourth iteration
$x=0.999966, y=-1.000078, z=0.999956$
- Fifth iteration

$$
x=1.0000, y=-0.999997, z=0.999992
$$

- The values in the last iterations being practically the same, we can stop.
- Hence the solution is $x=1, y=-1, z=1$.

