UNIT -2

FINANCIAL PLANNING

By: Dr. Tripti Triapthi

Financial Planning

- A financial plan is a statement estimating the amount of capital and determining its composition. The quantum of funds needed will depend upon the assets requirements of the business.
- The time at which funds will be needed should be carefully decided so that the finances are raised at a time when these are needed.
- There are a number of ways for raising funds

Objectives of Financial Plan

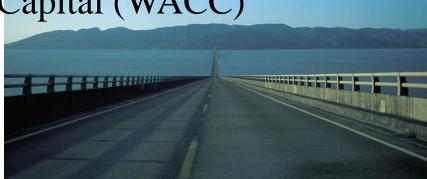
- Adequate Funds
- Balancing of Cost and Risk
- Flexibility
- Simplicity
- Long Term view
- Liquidity
- Optimum Use
- Economy

Principles of Sound financial Plan

- Simplicity
- Based on clear cut objectives
- Less Dependence on Outside Sources
- Flexibility
- Solvency and Liquidity
- Cost
- Profitability

Factors Affecting Financial Plan

- Nature of Industry
- Standing of the Concern
- Future Plans
- Availability of Sources
- General Economic Conditions
- Government Control


Financial Plan

- Long Term Financial Plan
- Short Term Financial Plan

Capital Structure

Coverage -

- Capital Structure concept
- Capital Structure planning
- Concept of Value of a Firm
- Significance of Cost of Capital (WACC)

Capital Structure theories

- Net Income
- Net Operating Income
- Modigliani-Miller
- Traditional Approach

Capital Structure

- Capital structure can be defined as the mix of owned capital (equity, reserves & surplus) and borrowed capital (debentures, loans from banks, financial institutions)
- *Maximization of shareholders' wealth is prime objective of a financial manager. The same may be achieved if an optimal capital structure is designed for the company.
- Planning a capital structure is a highly psychological, complex and qualitative process.
- #It involves balancing the shareholders' expectations (risk & returns) and capital requirements of the firm.

Planning the Capital Structure Important Considerations –

- *Return*: ability to generate maximum returns to the shareholders, i.e. maximize EPS and market price per share.
- *Cost:* minimizes the cost of capital (WACC). Debt is cheaper than equity due to tax shield on interest & no benefit on dividends.
- *Risk:* insolvency risk associated with high debt component.
- *Control*: avoid dilution of management control, hence debt preferred to new equity shares.
- *Flexible:* altering capital structure without much costs & delays, to raise funds whenever required.
- *Capacity:* ability to generate profits to pay interest and principal.

Value of a Firm – directly co-related with the maximization of shareholders' wealth.

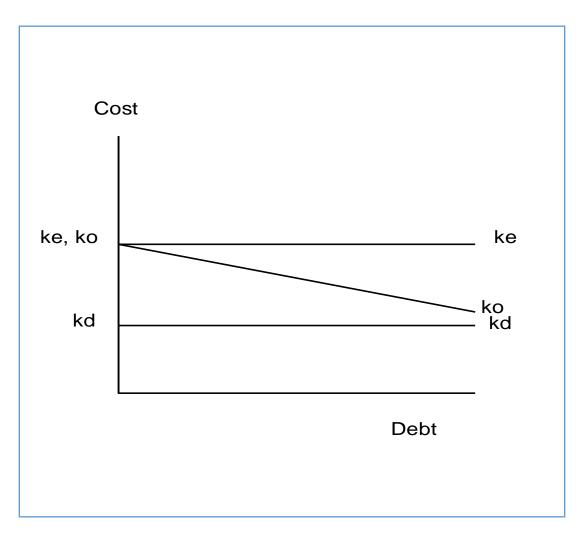
- ➤ Value of a firm depends upon earnings of a firm and its cost of capital (i.e. WACC).
- Earnings are a function of investment decisions, operating efficiencies, & WACC is a function of its capital structure.
- ➤ Value of firm is derived by capitalizing the earnings by its cost of capital (WACC). Value of Firm = Earnings / WACC
- Thus, value of a firm varies due to changes in the earnings of a company or its cost of capital, or both.
- Capital structure cannot affect the total earnings of a firm (EBIT), but it can affect the residual shareholders' earnings.

An illustration of Income Statement

Partic ulars	Rs.
Sales (A)	10,000
(-) Cost of goods sold (B)	4,000
Gross Profit $(C = A - B)$	6,000
(-) Operating expenses (D)	2,500
	2,000
Operating Profit (EBIT) (E = C - D)	3,500
	L'.
(-) Interest (F)	1,000
EBT (G = E - F)	2,500
(-) Tax @ 30% (H)	750
(-) 1 ux & 30% (11)	750
PAT (I = G - H)	1,750
(-) Preference Dividends (J)	750
Profit for Equity Shareholders (K = I - J)	1,000
	200
No. of Equity Shares (L)	200
Earning per Share (EPS) (K/L)	5

Capital Structure Theories

ASSUMPTIONS -


- Firms use only two sources of funds equity & debt.
- ❖ No change in investment decisions of the firm, i.e. no change in total assets.
- ❖ 100 % dividend payout ratio, i.e. no retained earnings.
- *Business risk of firm is not affected by the financing mix.
- ❖ No corporate or personal taxation.
- ❖ Investors expect future profitability of the firm.

- Net Income approach proposes that there is a definite relationship between capital structure and value of the firm.
- The capital structure of a firm influences its cost of capital (WACC), and thus directly affects the value of the firm.
- NI approach assumptions
 - o NI approach assumes that a continuous increase in debt does not affect the risk perception of investors.
 - o Cost of debt (K_d) is less than cost of equity (K_e) [i.e. $K_d \le K_e$]
 - o Corporate income taxes do not exist.

• As per NI approach, higher use of debt capital will result in reduction of WACC. As a consequence, value of firm will be increased.

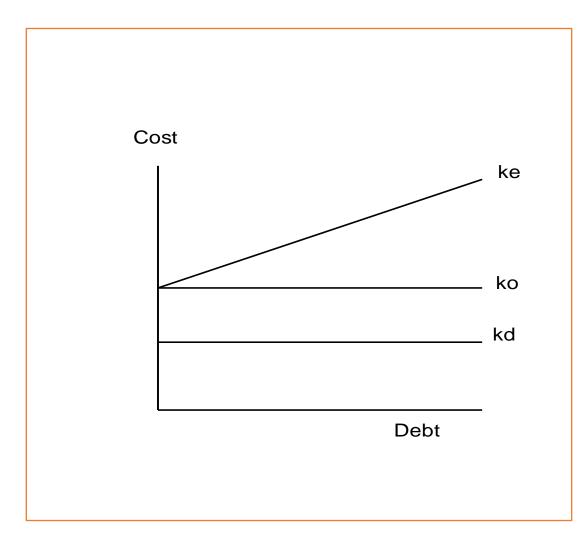
Value of firm = <u>Earnings</u> WACC

- Earnings (EBIT) being constant and WACC is reduced, the value of a firm will always increase.
- Thus, as per NI approach, a firm will have maximum value at a point where WACC is minimum, i.e. when the firm is almost debt-financed.

As the proportion of debt (K_d) in capital structure increases, the WACC (K_o) reduces.

Calculate the value of Firm and WACC for the following capital structures			
EBIT of a firm Rs. 200,000.	Ke = 10%	Kd = 6%	
Debt capital Rs. 500,000	Debt = Rs. 700	,000 Debt = Rs. 200	0,000

Partic ulars	case 1	case 2	case 3
EBIT	200,000	200,000	200,000
(-) Interest	30,000	42,000	12,000
EBT	170,000	158,000	188,000
Ke	10%	10%	10%
Value of Equity	1,700,000	1,580,000	1,880,000
(EBT / Ke)			
Value of Debt	500,000	700,000	200,000
Total Value of Firm	2,200,000	2,280,000	2,080,000
WACC	9.09%	8.77%	9.62%
(EBIT / Value) * 100			


Capital Structure Theories – B) Net Operating Income (NOI)

- Net Operating Income (NOI) approach is the exact opposite of the Net Income (NI) approach.
- As per NOI approach, value of a firm is not dependent upon its capital structure.
- Assumptions
 - o WACC is always constant, and it depends on the business risk.
 - o Value of the firm is calculated using the overall cost of capital i.e. the WACC only.
 - o The cost of debt (K_d) is constant.
 - o Corporate income taxes do not exist.

Capital Structure Theories – B) Net Operating Income (NOI)

- NOI propositions (i.e. school of thought) -
 - ♣ The use of higher debt component (borrowing) in the capital structure increases the risk of shareholders.
 - ♣ Increase in shareholders' risk causes the equity capitalization rate to increase, i.e. higher cost of equity (K_e)
 - ♣ A higher cost of equity (K_e) nullifies the advantages gained due to cheaper cost of debt (K_d)
 - ₄ In other words, the finance mix is irrelevant and does not affect the value of the firm.

Capital Structure Theories – B) Net Operating Income (NOI)

- Cost of capital (K_o)
 is constant.
- As the proportion of debt increases, (K_e) increases.
- No effect on total cost of capital (wacc)

Capital Structure Theories – B) Net Operating Income (NOI)

Calculate the value of firm and cost of equity for the following capital structure -				
EBIT = Rs. 200,000.	WACC(Ko) = 10%	Kd = 6%		
Debt = Rs. 300,000, Rs. 400,000, Rs. 500,000 (under 3 options)				

Partic ulars	Option I	Option II	Option III
EBIT	200,000	200,000	200,000
WACC (Ko)	10%	10%	10%
Value of the firm	2,000,000	2,000,000	2,000,000
Value of Debt @ 6 %	300,000	400,000	500,000
Value of Equity (bal. fig)	1,700,000	1,600,000	1,500,000
Interest @ 6 %	18,000	24,000	30,000
EBT (EBIT - interest)	182,000	176,000	170,000
Hence, Cost of Equity (Ke)	10.71%	11.00%	11.33%

- MM approach supports the NOI approach, i.e. the capital structure (debt-equity mix) has no effect on value of a firm.
- Further, the MM model adds a behavioural justification in favour of the NOI approach (personal leverage)
- Assumptions
 - o Capital markets are perfect and investors are free to buy, sell, & switch between securities. Securities are infinitely divisible.
 - o Investors can borrow without restrictions at par with the firms.
 - o Investors are rational Sinformed of risk-return of all securities
 - o No corporate income tax, and no transaction costs.
 - o 100 % dividend payout ratio, i.e. no profits retention

MM Model proposition -

- o Value of a firm is independent of the capital structure.
- o Value of firm is equal to the capitalized value of operating income (i.e. *EBIT*) by the appropriate rate (i.e. *WACC*).
- o Value of Firm = Mkt. Value of Equity + Mkt. Value of Debt
 - = Expected EBIT
 - Expected WACC

MM Model proposition -

- o As per MM, identical firms (except capital structure) will have the same level of earnings.
- o As per MM approach, if market values of identical firms are different, 'arbitrage process' will take place.
- o In this process, investors will switch their securities between identical firms (from levered firms to un-levered firms) and receive the same returns from both firms.

Levered Firm

- Value of levered firm = Rs. 110,000
- Equity Rs. 60,000 + Debt Rs. 50,000
- $\bullet K_d = 6 \%$, EBIT = Rs. 10,000,
- Investor holds 10 % share capital

Un-Levered Firm

- Value of un-levered firm = Rs. 100,000 (all equity)
- EBIT = Rs. 10,000 and investor holds 10 % share capital

Return from Levered Firm:

$$Investment = 10\% (110,000 - 50,000) = 10\% (60,000) = 6,000$$

$$Return = 10\% [10,000 - (6\% \times 50,000)] = 1,000 - 300 = 700$$

Alternate Strategy:

- 1. Sell shares in *L*: $10\% \times 60,000 = 6,000$
- 2. Borrow (personal leverage): $10\% \times 50,000 = 5,000$
- 3. Buy shares in $U: 10\% \times 100,000 = 10,000$

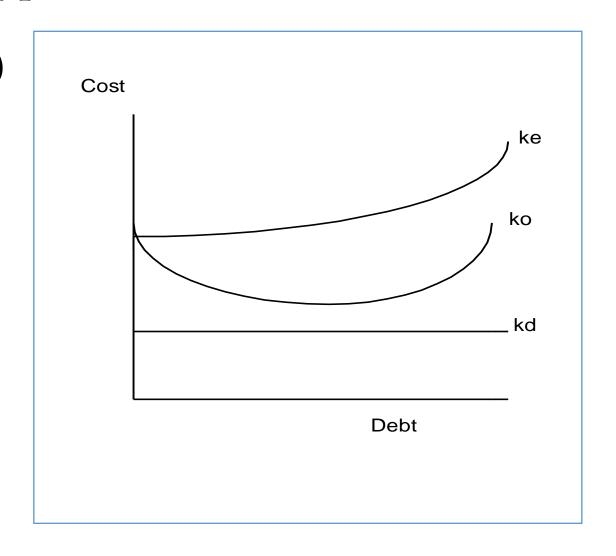
Return from Alternate Strategy:

$$Investment = 10,000$$

$$Return = 10\% \times 10,000 = 1,000$$

Less: Interest on personal borrowing = $6\% \times 5,000 = 300$

Net return =
$$1,000 - 300 = 700$$


Cash available = 11,000 - 10,000 = 1,000

- The NI approach and NOI approach hold extreme views on the relationship between capital structure, cost of capital and the value of a firm.
- Traditional approach ('intermediate approach') is a compromise between these two extreme approaches.
- Traditional approach confirms the existence of an optimal capital structure; where WACC is minimum and value is the firm is maximum.
- As per this approach, a best possible mix of debt and equity will maximize the value of the firm.

The approach works in 3 stages -

- 1) Value of the firm increases with an increase in borrowings (since $K_d < K_e$). As a result, the WACC reduces gradually. This phenomenon is up to a certain point.
- 2) At the end of this phenomenon, reduction in WACC ceases and it tends to stabilize. Further increase in borrowings will not affect WACC and the value of firm will also stagnate.
- 3) Increase in debt beyond this point increases shareholders' risk (financial risk) and hence K_e increases. K_d also rises due to higher debt, WACC increases & value of firm decreases.

- Cost of capital (K_o)
 is reduces initially.
- At a point, it settles
- But after this point,
 (K_o) increases, due to increase in the cost of equity. (K_e)

EBIT = Rs. 150,000, presently 100% equity finance with Ke = 16%. Introduction of debt to the extent of Rs. 300,000 @ 10% interest rate or Rs. 500,000 @ 12%.

For case I, Ke = 17% and for case II, Ke = 20%. Find the value of firm and the WACC

Partic ulars	Pre s e ntly	case I	case II
Debt component	-	300,000	500,000
Rate of interest	0%	10%	12%
EBIT	150,000	150,000	150,000
(-) Interest	-	30,000	60,000
EBT	150,000	120,000	90,000
Cost of equity (Ke)	16%	17%	20%
Value of Equity (EBT / Ke)	937,500	705,882	450,000
Total Value of Firm (Db + Eq)	937,500	1,005,882	950,000
WACC (EBIT / Value) * 100	16.00%	14.91%	15.79%