

TOPIC- HALOGENATION

LECTURE BY – Dr. Pooja Sharma Guest Faculty in Industrial Chemistry Department

INDEX-

HALOGENATION INTRODUCTUION
CHLORIONATION
BROMINATION
PHOTOHALOGENATION

DEFINITION

- Halogenation is defined as the process in which one or more halogen atoms are introduced in into an organic compound.
- Halogen atoms include F, Cl, Br etc.

MECHANISM

CHLORINATION (I)DIRECT ACTION OF CHLORENE GAS (a) CHLORINATION OF BENZENE-

(b) CHLORINATION OF TOLUENE

© CHLORINATION OF METHANE

Initiation

(1) Cl₂ - light - 2Cl.

Propagation

 $(2) \mathbf{CI} + \mathbf{CH}_4 \longrightarrow \mathbf{HCI} + \mathbf{CH}_3$

 $(3) \quad \mathsf{CH}_3 + \mathsf{Cl}_2 \longrightarrow \mathsf{CH}_3\mathsf{Cl} + \mathsf{Cl}_2$

Termination

(4) 2CI - Cl₂

 $CI + CH_3 \longrightarrow CH_3CI$

2 · CH₃ — ► CH₃CH₃

(2) HYDROCHLORIC ACID AS THE CHLORINATING AGENT (a) Addition reaction $H - C \equiv C - H + HCI \xrightarrow{HgCl_2} \qquad H - C = C$ $H - C \equiv C - H + HCI \xrightarrow{HgCl_2} \qquad H - C = C$

(b)SUBSTITUTION REACTION

(3)CHLORINATION WITH THIONYL CHLORIDE ROH + $SOCI_2 \longrightarrow RCI + HCI + SO_2$

BROMINATION REACTION

Bromene, bromides, bromates, and alkaline
hypobromites are used as brominating agent.

e.g. – (a) Addition bromination or addition reaction-

(b) REPLACEMENT REACTION

PHOTOHALOGENATION

> Photohalogenation can be broadly defined as the effect of electromagnetic radiation on halogenation reaction and includes which may be produced by all wavelengths from those of radio waves through X-rays, gamma rays, etc in to cosmic rays.

>When radiation is absorbed by molecules, they are eitherraised to higher energy levels or dissociated.

> The molecule in higher energy level may suffer several different fates, including disssociation, loss of energy by collision, loss of energy through molecules at collision.

> The amount of energy required to rise a molecule to a higher energy level is called a quantum.

Formula for quantum = h ×constant/wavelength in cm.

Halogen	Energy of dissociation into two normal atoms, ev	Equivalent wavelength, A	Minimum frequency to form an excited atom, A
Chlorine	2.480	5,000	4,785
Bromine	1.970	6,288	5,100
Iodine	1.542	8,000	4,989
HCl	4.300	2,800	2,500
HBr	*****	3,350	?
HI		3,850-4,100	!

