Syllabus M.Sc. Physics **Duration: Two Year** | | Part A Introduction | | | | | | | | |-------|---|------------|--|--|---|--|--|--| | Progr | ram: PG | Class: M | .Sc. | Year:I(I Sem) |) | Session: | 2025-26 | | | Subje | ect: Physics | | | | | -L | | | | 1 | Course Code | | | | | | | | | 2 | Course Title | | | Mather | matical Physics | S | | | | 3 | Course Type (Core Co | ourse/ | | Core Course (CC-11) | | | | | | | Discipline Specific Ele | ective) | | | | | | | | 4 | Pre-requisite (if any) | | | s course, a stude | | | | | | 5 | Course Learning outo
(CLO) | omes | to: 1. Understar Aryabhata 2. Develop a curvilinea functions 3. Apply m translating 4. Solve qua | and the early life, and Bhaskaracl astrong foundat ar coordinates, complex analys athematical tech greal-world situative problem or analyse physical | education, and harya II. ion in mathema probability, g is and tensor. Iniques to solutions into mathema by applying | d historical
atical methor
group theover physics
we physics | ods such as ry, special problems, ormulations. | | | 6 | Credit Value | | | | 6 | | | | | 7 | 7 Total Marks Max. Marks: 60+40= 100 Min. Passing Marks: 24+16= 40 | | | | | | | | | | | | rt B- Content | t of the Course | | | | | | | No. of Lectures (in hou | rs): 90 | | | | | | | | Unit | | | Тор | ics | | | No. of
Lectures
(1 hour
each) | | | I | Curvilinear Cool | dinates, p | robability and | d Group theory | | | 18 | | | | Curvilinear Coordinates, probability and Group theory A brief biography of Aryabhata and Bhaskaracharya II with their major contribution to science and society. Introduction to Curvilinear Coordinates, Orthogonal curvilinear coordinates, differential of an arc length, differential operators, spherical and cylindrical coordinates and their unit vectors. Elementary probability theory, Conditional Probability, Bayes theorem, random variables, binomial, Poisson and normal distributions. Central limit theorem. Group theory: Introductory group theory, Special unitary group of degree two SU(2), Special orthogonal group of degree three SO(3). Activity: Ask students for a group discussion on contributions of Indian mathematicians. Ask students to make charts on group theory (SU(2), SO(3)). Organize debate on historical time units (e.g. Yuga, kalpa) and ask them to convert in modern unit. | | | | | | | | | II | Special Function 1. Legendre | function: | | quation, Legend | | | 18 | | | | | | | formula, Genera
ogonality of Leg | | | | | | | 2. | Bessel functions: Bessel equation and its solution, Bessel functions Jn(x), Recurrence formula and generating function, Orthogonality of Bessel | | |------|--------|--|----| | | | function. | | | | 3. | Hermite's Function: Hermite's equation, Generating function of Hermite | | | | | polynomials, Orthogonal property of Hermite polynomials, Recurrence | | | | | formula for Hn(x) of Hermite equation. | | | III | Compl | lex Analysis | 18 | | | 1. | Introduction to Complex Numbers and their Graphical Representation, | | | | | Functions of Complex Variables, Analyticity of complex function, Cauchy- | | | | | Riemann equation, | | | | 2. | Singularities: poles, removable singularity, essential singularity, branch | | | | | points, Cauchy theorem, Cauchy integral formula, Laurent and Taylor's | | | | | expansion. Residues and Residue Theorem. Application of Contour | | | | | Integration in solving Definite Integrals. | | | IV | Fourie | er and Laplace transform: | 18 | | | 1. | Fourier: Fourier Transforms, Integrals Transforms, Fourier Integral theorem | | | | | (Statement only), Fourier sine and cosine transform, Fourier transform of | | | | | single pulse, trigonometric, exponential functions, Fourier transform of | | | | | derivatives, Inverse Fourier transform, Convolution theorem, Properties of | | | | | Fourier transforms. | | | | 2. | Laplace:Laplacetransforms, Laplace transform of Elementary functions, | | | | | Properties of Laplace transforms, Change of Scale Theorem, Shifting | | | | | Theorem, Laplace transforms of derivatives, Derivatives and Integrals of | | | | | Laplace transforms, Laplace transform of Unit Step functionand Periodic | | | | | Functions, Convolution Theorem, Inverse Laplace transforms, Solution of | | | | | heat flow along semi-infinite bar using Laplace transform. | | | V | | r Analysis | 18 | | | 1. | Tensors- Notations and Conversions, Contravarient tensors, Rank of the | | | | | Tensors | | | | 2. | Properties of the Tensors e.g. Addition, Subtraction and Product, | | | | | Contraction, Cartesian tensors and their transformation properties | | | | 3. | 8 | | | | | with examples from piezoelectricity, stiffness and compliance. | | | 17 1 | | Samilia and Caratinatan and satisfication of the state | • | Keywords/Tags: Curvilinear Coordinates, generatingfunction, ComplexVariables, Laplacetransforms, tensors #### **Part C-Learning Resources** #### Text Books, Reference Books, Other resources #### **Suggested Readings:** - 1. K. V. Sarma (1997), Aryabhata, National Book Trust, India. - 2. Boas M. L., "Mathematical Methods in the Physical Sciences", Wiley, Third edition. - 3. Arfken G.B., Weber H.J., Harris F.E., "Mathematical Methods for Physicists", Elsevier,7th edition. - 4. Spiegel M.R., "Fourier Analysis", Tata McGraw-Hill, 2004. - 5. Fokas A. S. & Ablowitz M.J., "Complex Variables", Cambridge Univ. Press, 2011, 8th edition. - 6. Dass H.K. &Verma R., "Mathematical Physics", S. Chand, Eighth Edition. https://www.youtube.com/watch?v=s- 3v3xEvHU https://www.youtube.com/watch?v=WBF5hyrHStw https://www.youtube.com/watch?v=peZWarEjk44 https://www.youtube.com/watch?v=B2VrnJsceW0 https://ocw.mit.edu/courses/8-962-general-relativity-spring-2020/video_galleries/video-lectures/ https://www.youtube.com/playlist?list=PLhSp9OSVmeyJ5N-JUEZj7uS6IAT9a79nD https://www.youtube.com/playlist?list=PLhSp9OSVmeyIYLVvSJ8m6KvVwJs7M9QBm https://www.youtube.com/playlist?list=PLp0hSY2uBeP-O0PDasx0dkQle779r8hqq #### **Part D-Assessment and Evaluation** #### **Suggested Continuous Evaluation Methods:** Maximum Marks: 100 Continuous Comprehensive Evaluation (CCE): 40 Marks University Exam (UE):60 Marks | Internal Assessment : Continuous | | | |---|----------------------------------|----------| | Comprehensive
Evaluation (CCE) | Class Test | 20 | | | Assignment/Presentation | 20 | | External Assessment : | Section(A): Very Short Questions | 5x1=5 | | University Exam Section | Section (B): Short Questions | 5x4=20 | | Time: 03.00 Hours | Section (C):Long Questions | 5x7 = 35 | | | | | | | Part A Introduction | | | | | | | |------|--|--|--|--|--|--|--| | | ram: PG | Class: N | A.Sc. Year:I (I Sem) | Session: 2025-26 | | | | | Subj | ect: Physics | | | | | | | | 1 | Course Code | | | | | | | | 2 | Course Title | | Classical Mechanics | | | | | | 3 | Course Type (Core
Discipline Specific
Elective) | | Core Course (CC-12) | | | | | | 4 | Pre-requisite (if an | ıy) | To Study this course a student must have graduation with physics as major or minor subject. | | | | | | 5 | Course Learning of (CLO) | outcomes | On successful completion of this course, the st to:1. Understand the historical background and co Raman and Meghnad Saha. | | | | | | | 2. Formulate Lagrange's and Hamilton's equations of motion as understand their applications. | | | | | | | | | | | Apply the variational principle and principle of least action to solve physical problems. Define and apply canonical transformations and generating functions. Analyze small oscillations and determine normal modes of vibration. | | | | | | | 6. Understand the motion of rigid bodies. | | | | | | | | 6 | Credit Value | | 6 | | | | | | 7 | Total Marks | | Max. Marks: 100 (40 + 60) Min.Passing Marks: 16+24=40 | | | | | | | | | Part B- Content of the Course | | | | | | Tota | l No. of Lectures (in | hours): 9 | | | | | | | Unit | | | Topics | No. of
Lectures
(1 hour
each) | | | | | I | elastic vib (statistical 2. Newtonian classification D'Alember from D-Alember particle monopendulum, 3. Generalize conservation coordinate **Activities:* 1. Ask students to mechanics.** | background
rations, w
mechanics,
mechanics
on, Gene
rt's Princip
lembert pri
oving in E.
Atwood's
d moments
on of energy
systems. | an Dynamics of and contributions of C.V. Raman (regarding state ave mechanics), Meghnad Saha ionization experiments and thermodynamics – classical roots). The second and system of particles, Constraints and ralized coordinates, Principle of virtual pole in generalized coordinates, Langrange's experimentally and the second field, Application: Single particle in Space, and field, Application: Single particle in Space, and and cyclic coordinates, Hamiltonian function, Hamilon's equations, Hamiltonian function, Hamilton's equations in discontinuous discontinuous and their work related to classical mechanics to quantum mechanics. | quation d their work, quation charged Simple on and ifferent | | | | | | 3. Organize debate on various contributions of Indian Scientist (MeghnadSaha, C.V. | | |-----|--|----| | | Raman, SatyendraNath Bose, J.C. Bose)). | | | II | Central forces and Variational principles | 18 | | | 1. Variational principle, Euler-Lagrange's equation from variational principle, | | | | Applications: shortest distance between two points and Brachistochrone | | | | problem, Deduction of Hamilton principle from D- Alembert principle, | | | | Lagrange's equations of motion for Non-Holonomic system and Lagrange's | | | | Multipliers, Principle of least action. | | | III | Canonical transformation and Brackets | 18 | | | 1. Canonical Transformation, Legendre transformation, Generating functions, | | | | Application of canonical transformation. | | | | 2. Poisson's Brackets and their properties, Lagrange Brackets and their | | | | properties, Invariance of Poisson's Bracket with respect to canonical | | | | transformation, Jacobi's Identity, Phase space and Liouville's Theorem. | | | | | | | IV | Hamilton- Jacobi formulation and Small oscillation | 18 | | IV | Hamilton- Jacobi formulation and Small oscillation 1. Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic | 18 | | IV | | 18 | | IV | 1. Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic | 18 | | IV | 1. Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic oscillator, Kepler's Problem, Action and angle variables. | 18 | | IV | Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic oscillator, Kepler's Problem, Action and angle variables. One-dimensional oscillator, Two coupled oscillators, Normal Coordinates | 18 | | IV | Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic oscillator, Kepler's Problem, Action and angle variables. One-dimensional oscillator, Two coupled oscillators, Normal Coordinates and Normal Modes, Kinetic and potential energy in normal coordinates, | 18 | | V | Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic oscillator, Kepler's Problem, Action and angle variables. One-dimensional oscillator, Two coupled oscillators, Normal Coordinates and Normal Modes, Kinetic and potential energy in normal coordinates, General theory of small oscillation, Secular equation and Eigen value equation, Non-inertial systems | 18 | | | Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic oscillator, Kepler's Problem, Action and angle variables. One-dimensional oscillator, Two coupled oscillators, Normal Coordinates and Normal Modes, Kinetic and potential energy in normal coordinates, General theory of small oscillation, Secular equation and Eigen value equation, Non-inertial systems Euler's angles, Infinitesimal rotations as vectors (Angular velocity), Angular | | | | Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic oscillator, Kepler's Problem, Action and angle variables. One-dimensional oscillator, Two coupled oscillators, Normal Coordinates and Normal Modes, Kinetic and potential energy in normal coordinates, General theory of small oscillation, Secular equation and Eigen value equation, Non-inertial systems | | | | Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic oscillator, Kepler's Problem, Action and angle variables. One-dimensional oscillator, Two coupled oscillators, Normal Coordinates and Normal Modes, Kinetic and potential energy in normal coordinates, General theory of small oscillation, Secular equation and Eigen value equation, Non-inertial systems Euler's angles, Infinitesimal rotations as vectors (Angular velocity), Angular Momentum and Inertia tensor. Euler's equations of motion for a rigid body, Torque- free motion of a rigid | | | | Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic oscillator, Kepler's Problem, Action and angle variables. One-dimensional oscillator, Two coupled oscillators, Normal Coordinates and Normal Modes, Kinetic and potential energy in normal coordinates, General theory of small oscillation, Secular equation and Eigen value equation, Non-inertial systems Euler's angles, Infinitesimal rotations as vectors (Angular velocity), Angular Momentum and Inertia tensor. Euler's equations of motion for a rigid body, Torque- free motion of a rigid body, Motion of a heavy Symmetrical top, Gyroscope. | | | | Hamilton- Jacobi equation, Solution by Hamilton- Jacobi method: Harmonic oscillator, Kepler's Problem, Action and angle variables. One-dimensional oscillator, Two coupled oscillators, Normal Coordinates and Normal Modes, Kinetic and potential energy in normal coordinates, General theory of small oscillation, Secular equation and Eigen value equation, Non-inertial systems Euler's angles, Infinitesimal rotations as vectors (Angular velocity), Angular Momentum and Inertia tensor. Euler's equations of motion for a rigid body, Torque- free motion of a rigid | | **Keywords/Tags:** Generalized coordinates, Variational principle, Poisson's Brackets, Hamilton-Jacobi equation, Coriolis force. # **Part C-Learning Resources** #### Text Books, Reference
Books, Other resources #### **Suggested Readings:** - 1. Goldstein H., Poole C.P., Safko J.L., "Classical Mechanics", Pearson Education, 2002, 3rd Edition. - 2. Landau L. D., Lifshitz E. M., "Mechanics", Pergamon, 1976. - 3. Upadhyaya J. C., "Classical Mechanics", Himalaya Publishing House. - 4. Gupta S.L., Kumar V., Sharma, "Classical mechanics", PragatiPrakashan. # **Suggested equivalent online courses:** https://ocw.mit.edu/courses/8-03sc-physics-iii-vibrations-and-waves-fall-2016/pages/part-i-mechanical-vibrations-and-waves/ https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/pages/week-2-newtons-laws/4-4-non-inertial-reference-frames/ https://www.youtube.com/watch?v=NE73aD0ELtI&t=361s https://www.youtube.com/watch?v=0DHNGtsmmH8 https://www.youtube.com/watch?app=desktop&v=pB-aleLeKL0&t=0s https://www.youtube.com/watch?v=nFpC1s1joRU https://www.youtube.com/watch?v=z-dGZgq-6jg https://www.youtube.com/watch?v=qYnvc4rKeuA https://www.youtube.com/watch?v=3iuBKOxAIWg | Part D-Assessment and Evaluation | | | | | | | |--|---|--------|--|--|--|--| | Suggested Continuous Evaluation Methods: | | | | | | | | Maximum Marks : 100 | Maximum Marks: 100 | | | | | | | Continuous Comprehensive Evaluation | on (CCE): 40 Marks University Exam (UE):60 Marks | | | | | | | Internal Assessment : Continuous | | | | | | | | Comprehensive Evaluation (CCE) | Class Test | 20 | | | | | | | Assignment/Presentation | 20 | | | | | | External Assessment : | External Assessment: Section(A): Very Short Questions 5x1=5 | | | | | | | University Exam Section | Section (B): Short Questions | 5x4=20 | | | | | | Time : 03.00 Hours | Section (C):Long Questions | 5x7=35 | | | | | | Any remarks/ suggestions: | | | | | | | | | | Part A Introd | luction | | | |-------------|--|-----------------------|----------------------|----------------|--------------------------------------| | Progr | ram: Degree (PG) | Class: M.Sc. | Year:I(I Sem) | Se | ssion: 2025-26 | | Subje | ct:Physics | | | • | | | 1 | Course Code | | | | | | 2 | Course Title | | Lab | - I | | | 3 | Course Type (Core Course Discipline Specific Elective | | Core Cours | se (PC-11) | | | 4 | Pre-requisite (if any) | nt must h | ave UG degree in | | | | 5 | Course Learning outcomes (CLO) On successful completion of course, study to: 1. Determine the value of Rydberg's constant 2. Calculate energy loss per cycle (hysteresis) 3. Measure variation of resistivity with temper 4. Compare self Inductance of two coils. | | | | s.
). | | 6 | Credit Value | 3. Carcarace a | 4 | | iporatare. | | 7 | Total Marks | Max. Marks | - | | ing Marks:40 | | | | Part B- Content of | | 1/1111/ 1 0/00 | <u>9</u> | | Γ | Total numbers of Lectures - | Practical (in hour | s per week): 02 ho | ours per c | redit per week | | Unit | | Topics | | • | No. of Lectures (Per week in hours.) | | 1. | Determine the value of Rydl | perg's constants wit | h the diffraction gr | rating and | 02 hours per | | | hydrogen tube. | | | | credit per week | | 2. | To determine the hysteresis | loss of a given tran | sformer by CRO. | | | | 3. | To find the maximum power | r and efficiency of | a solar cell. | | | | 4. | Study the temperature deperdent determine the band gap of the | | y of a semiconduc | tor and to | | | 5. | To verify Fresnel's formula | for the reflection of | f light | | | | 6. | To compare Self-inductance | | | ll Bridge. | | | 7. | To determine the frequent experiment and verify $\lambda 2$ –T | cy of an electric | | | | | 8. | Determination of Lande's | 'g' factor of par | amagnetic materi | als using | | | • | electron spin resonance met | | | | | | 9. | To determine the self induct | <u>_</u> | | | | | 10. | Study of different thermoco | | | | | | | | Part C-Learning | | | | | | | oks, Reference Boo | ks, Other resour | ces | | | 1."B
2." | Suggested Readings: 1."B.L. Worsnop and H.T. Flint – Advanced Practical Physics for Students" 2."C.L. Arora – Practical Physics" 3."V.K. Mehta – Principles of Electronics" | | | | | - 4. "AjoyGhatak Optics" - 5. "Melissinos & Napolitano Experiments in Modern Physics" - 6. "S. O. Pillai Solid State Physics" - 7. "G.F. Knoll Radiation Detection and Measurement" - 8. "S.M. Sze Physics of Semiconductor Devices" https://vlab.amrita.edu/?sub=1&brch=75&sim=332&cnt=1 https://vlab.amrita.edu/?sub=1&brch=281&sim=1487&cnt=1 $\underline{\text{https://vlab.amrita.edu/?sub=1\&brch=195\&sim=720\&cnt=1https://vlab.amrita.edu/?sub=1\&brch=282\&sim=1511\&cnt=1}$ https://vlab.amrita.edu/?sub=1&brch=75&sim=340&cnt=1 https://www.bhavansvc.ac.in/naac/c3/3.1.3/19%20PC%20201.pdf https://vlab.amrita.edu/?sub=1&brch=282&sim=1520&cnt=1 #### Part D-Assessment and Evaluation #### **Suggested Continuous Evaluation Methods:** | Internal Assessment | Marks | External Assessment | Marks | |---|-------|--------------------------|-------| | Lab Record/Class Interaction /Quiz | 15 | Viva Voce on Practical | 30 | | Attendance in the lab | 10 | | | | Assignments (Charts/ Model Seminar / Rural
Service/ Technology Dissemination/ Report of
Excursion/ Lab Visits/ Survey / Industrial visit) | 15 | Table work / Experiments | 30 | | TOTAL | 40 | | 60 | | | Part A Introduction | | | | | | | |--------|---|-------------------------|----------------------|--------------------------------------|--------------|----------------------|--| | Progr | am: Degree (PG) | Class: M. | .Sc. | Year:I (I Semest | er) Se | ssion: 2025-26 | | | Subje | ct:Physics | | | | | | | | 1 | Course Code | | | | | | | | 2 | Course Title | | Lab - II | | | | | | 3 | Course Type (Core C | Course/ | | Core Cour | rse (PC-12) | 1 | | | | Discipline Specific E | lective) | | | | | | | 4 | Pre-requisite (if any) | | To Study to physics. | this course a stud | ent must h | ave UG degree in | | | 5 | Course Learning out (CLO) | comes | On success to: | sful completion of | course, stu | dents will be able | | | | | | 1. Understar | nd basic principles of | optics. | | | | | | | | dispersion phenome | | | | | | | | | ation using Cauchy's | | | | | | | | | nd the behaviour of li | | optical setups, such | | | | | | | wedges, and interfered the phenomena | | electric effect and | | | | | | | radiation. | or photoc | rectife effect and | | | | | | | Explore rotational spe | ctrum of iod | line vapor. | | | 6 | Credit Value 4 | | | | • | | | | 7 | Total Marks Max. Marks: 100 Min. Pa | | | | Min. Pass | ing Marks:40 | | | | Part B- Content of the Course | | | | | | | | | Total Number of | Lectures (| (Hours per | week): 02 hours p | er credit p | | | | S.N. | | | Topics | | | No. of Lectures | | | | | | | | | (Per week in | | | 1. | To calibrate of drum of | of constant | daviation en | actro graph | | hours.) 02 hours per | | | 2. | To study the variation | | | | riem with | credit per week | | | 2. | wavelength and Cauch | | | - | 115111 WIUI | credit per week | | | 3. | To determine the way | | | | action at a | | | | | straight edge. | . 51 5 115011 01 | | init iight by diffit | at u | | | | 4. | | elength of | the given li | ght source with the | ne help of | 1 | | | - | To find out the wavelength of the given light source with the help of Michelson interferometer. | | | | | | | | 5. | To determine the angl | | wedge usin | g given laser beam | | | | | 6. | To determine the refractive index of water using hollow prism. | | | | | | | | 7. | To determine the Plank's constant using Black Body Radiation and Photo- | | | | | | | | | Detector. | | | | | | | | 8. | To determine the abs | sorption lin | nes in the ro | otational spectrum | of Iodine | | | | | vapour. | | | | | | | | 9. | Determination of Wavelength of different colours using LED. | | | | | | | | 10. | Photo-electric effect: | photo curre | nt versus int | ensity and wavelen | gth of | | | | | light. | | ~ ~ | | | | | | | | | | g Resources | | | | | - | | kt Books, R | Reference Bo | ooks, Other resour | rces | | | | | ested Readings: | | | | | | | | 1. Ajo | yGhatak – Optics | | | | | | | - 2. E. Hecht Optics - 3. B.L. Theraja Modern Physics - 4. Practical Physics by S. P. Singh - 5. Advanced Practical Physics for Students by B.L. Worsnop and H.T. Flint https://vlab.amrita.edu/?sub=1&brch=282&sim=1507&cnt=1 https://vlab.amrita.edu/?sub=1&brch=281&sim=1515&cnt=1 https://vlab.amrita.edu/index.php?sub=1&brch=189 https://vlab.amrita.edu/?sub=3&brch=195&sim=840&cnt=4 # **Part D-Assessment and Evaluation** # **Suggested Continuous Evaluation Methods:** | Internal Assessment | Marks | External Assessment | Marks | |---|-------|--------------------------|-------| | Lab Record/Class Interaction /Quiz | 15 | Viva Voce on Practical | 30 | | Attendance in the lab | 10 | | | | Assignments (Charts/ Model Seminar / Rural
Service/ Technology Dissemination/ Report of
Excursion/ Lab Visits/ Survey / Industrial visit) | 15 | Table work / Experiments | 30 | | TOTAL | 40 | | 60 | | | | | | Part A I | ntroduction | | | |---------|----------------|--|------------------|---|--|------------------------|---------------| | Progra | ım: PG | | Class:
M.Sc. | | Year:I(II Sem) | Session: 202 | 5-26 | | | | | | | | | | | | t: Physics | | | 1 | | | | | 1 | Course Co | | | | | | | | 2 | Course Tit | | | Condensed Matter Physics | | | | | 3 | Course Ty | • ` | | | Core Cour | rse (CC-21) | | | | Discipline | | | | | | | | 4 | Pre-requis | Pre-requisite (if any) | | | this course a student m
or minor subject. | ust have graduation | with physics | | 5 | Course Le | arning o | utcomes | | cessful completion of the | his course, the stude | ents will be | | | (CLO) | C | | able to: | • | | | | | | | | 1. Under | rstand the concept of Pan | chamahabhuta. | | | | | | | 2. Analy | ze and classify crystal | structures using poin | t and space | | | | | | group | symmetries. | | _ | | | | | | 3. Under | rstand the Electronic and | Thermal Properties of | of materials. | | | | | | | ibe the mechanical beha | vior of crystalline so | lids through | | | | | | | -strain tensors. | | | | | | | | | rstand the phenomena of | | | | | | | | effect | s such as Meissner effect | and Josephson effec | t. | | 6 | Credit Val | | | 36 36 | 1 40 - 60 400 | 6 | 16:24 40 | | | Total Mar | ks | | | rks: 40 + 60= 100 | Min. Passing Marks: | 16+24=40 | | T-4-1 N | V C.I 4 | (i l | | rt B- Cont | ent of the Course | | | | Unit | No. of Lecture | es (in noi | urs): 90 | Т | | | No. of | | Unit | | | | 10 | opics | | Lectures | | I | Crystol | llograph | K 7 | | | | 18 | | • | | | | ne five basi | c elements Panchamahab | huta | 10 | | | | | | , Crystal structures- Hexagonal closed packed, Diamond, | | | | | | | | | ovskite structures, Reciprocal lattice. | | | | | | 3. | | | | n, Bragg's law, Lau's e | | | | | | lattice ve | | | , 66 , | 1 / 1 | | | | 4. | Fourier | analysis of the | e basis, Sc | attered wave amplitude, | Structure and form | | | | | factors. | | | _ | | | | | Activiti | | | | | | | | | 1. | _ | | on Indian | condensed matter pl | hysicists and their | | | | | contribu | | | | | | | | | | | | chamahabhuta. | | | | *** | | | | erent types | of crystal structure | | 10 | | II | | nical Pro | | | f., | | 18 | | | 1. | | | | for cubic crystals, st | ress strain tensors, | | | | 2 | | ince and stiffne | | | tio waxes in omistals | | | | ۷. | 2. Elastic constants and energy density of cubic crystals, elastic waves in crystals and elastic isotropy. | | | | | | | | Lattice | Dynami | | | | | | | | | | | no atomic | and diatomic lattice vi | brations. Dispersion | | | | 1. | | s, Phonon densi | | | oranons, Dispersion | | | | 3. | | | • | its, An-harmonic effect, | Equation of state of | | | | | | Thermal expans | | | 273411011 01 51410 01 | | | III | Electro | | Thermal Prop | | | | 18 | | | | | op | | | | | | | Sommerfeld free electron model, Density of states, Application of electronic specific heat, Wiedermann Franz Law, Boltzmann Transport equation. Relaxation time approximation and application to electrical conductivity, Hall Effect. | | | | | | | |----|---|----|--|--|--|--|--| | IV | 3D lattice vibrations | 18 | | | | | | | | 1. Vibration of three dimension lattice, coupling parameter approach in variance relations. | | | | | | | | | 2. Phonon dispersion curves and its experimental method of determination. | | | | | | | | | Neutron scattering | | | | | | | | V | Superconductivity | 18 | | | | | | | | Superconductivity characteristic features, Critical current, Persistent current and | | | | | | | | | Meissner effect, Critical Magnetic fields, Magnetic Susceptibility, flux quantization, | | | | | | | | | specific heat, Thermal conductivity, Isotope effect, Optical energy gap, Quasi particle | | | | | | | | | tunneling and Josephson effects (d.c. & a.c.), Electron phonon interaction, cooper pairs, | | | | | | | | | BCS theory, Type I and II superconductivity, Introduction to high temperature | | | | | | | | | superconductivity. | | | | | | | **Keywords/Tags:** Cubic crystal structure, Stress strain tensors, Mono atomic and diatomic lattice, Density of states, Vibration of three dimension lattice # Part C-Learning Resources #### **Text Books, Reference Books, Other resources** #### **Suggested Readings:** | 1. | Essence of Panchamahabhuta. | V.D.N. Rao | |----|-------------------------------------|---------------------------------| | 2. | Introduction to Solid State Physics | C. Kittel | | 3. | Introduction to Solids | R. A. Levy | | 4. | Principles of theory of Solids | J. M. Zeeman | | 5. | Solid State Physics | L. V. Azaroff | | 6. | Solid State Physics | N. W. Asheroff and N. D. Mermin | | 7. | Solid State Physics | A. J. Dekker | #### **Suggested equivalent online courses:** https://www.youtube.com/watch?v=Nwfz99SCoEM https://archive.nptel.ac.in/courses/115/106/115106127/ https://archive.nptel.ac.in/courses/115/105/115105131/ https://www.youtube.com/watch?v=yIr3NZM7N3A https://www.classcentral.com/course/youtube-noc-jan-2020-electronic-theory-of-solids-prof-arghya-taraphder-47339 https://www.youtube.com/watch?v=DHEamYwGY0Y https://www.youtube.com/watch?v=NxzEedNGThE https://nptel.ac.in/courses/117103063 https://www.youtube.com/watch?v=PXY1GZbmU8I #### **Part D-Assessment and Evaluation** #### **Suggested Continuous Evaluation Methods:** Maximum Marks: 100 Continuous Comprehensive Evaluation (CCE): 40 Marks University Exam (UE):60 Marks | Internal Assessment :40 marks | | | |---------------------------------------|----------------------------------|-------| | Continuous Comprehensive | Class Test | 20 | | Evaluation (CCE) | Assignment/Presentation | 20 | | External Assessment : 60 marks | Section(A): Very Short Questions | 5x1=5 | | University Exam Section Time: 03.00 Hours | Section (B): Short Questions Section (C): Long Questions | 5x4=20
5x7=35 | | |---|--|------------------|--| | Any remarks/ suggestions: | | | | | | Part A Introduction | | | | | | | | |-------------------------|--|----------------------------|--|--|---------------|--------------------|--|--| | Program: PG Class: M. S | | | c. | Year:I (II Sem) | Session | n: 2025-26 | | | | Subject: Physics | | | | | | | | | | 1 | Course Code | | | | | | | | | 2 | Course Title | | | Advanced Quantum Me | echanics | | | | | 3 | Course Type (Core | | | Core Course (CC-2 | 22) | | | | | | Discipline Specific I | | | | | | | | | 4 | Pre-requisite (if any | , | To Study this course a student must have graduation with physics | | | | | | | | ~ . | as major or minor subject. | | | | | | | | 5 | Course Learning ou | tcomes | | essful completion of this course, | , students wi | ll be able to | | | | | (CLO) | | understa | | 1: 1:1 | 1 | | | | | | | | concept of vibrations and sound b | | | | | | | | | | ert space, operators as matrices anations. | u Dirac 8 Br | A allu KE I | | | | | | | | e - dimensional Schrödinger equa | tion in terms | of spherical | | | | | | | | rdinates and its applications. | | or opiionoui | | | | | | | | tum theory of scattering and scat | tering amplit | ude. | | | | | | | - | rent approximation methods and | | | | | | 6 | Credit Value | | | 6 | | | | | | 7 | Total Marks | | Max. Mar | ks: 40+60=100 Min. Pas | sing Marks: | 16+24=40 | | | | | | Pa | art B- Co | ntent of the Course | | | | | | | l No. of Lectures (in | hours): 90 | | | | - | | | | Unit | Topics | | | | | No. of
Lectures | | | | I | Review and for | mulation of (| Quantum | Mechanics | | 18 | | | | | the Indian l | Knowledge Sy | Brahma" from Vedic philosophy and its significance in System. linger wave equation and wave function, linear vector | | | | | | | | | | - | - | | | | | | | Space, time
Hilbert spa | • | a ume ma | ependent vectors, inner product, | concept of | | | | | | | | etione as r | natrices, unitary transformation: | change of | | | | | | _ | | | ions and their properties. | change of | | | | | | | | | on by ladder or algebra method | 1) energy | | | | | | | | ` | on operator, matrices for x and P, | , | | | | | | Activities: | , creation and | William Co. | on operator, matrices for A that I | ζ• | | | | | | nouvilles. | | | | | | | | | | 1. Organize a group discussion on "How do Indian philosophical ideas like | | | | | | | | | | Nada Brahma help us understand the wave nature of reality?" | | | | | | | | | | 2. Arrange debate on "understanding ancient ideas for scientific concepts like | | | | | | | | | | the Schrödinger wave equation or the dual nature of particles". | | | | | | | | | | 3. Prepare a char on Different Operators and wave functions. | | | | | | | | | II | Three - dimensi | ional Schrödi | inger equ | ation and Angular Momentum | | 18 | | | | | 1. Three - dimensional Schrödinger equation in terms of spherical coordinates, | | |-----|--|----------| | | Applications for the determination of eigen functions and eigen values: (a) | | | | Rigid rotator (free axisand fixed plane), (b) Hydrogen atom. | | | | 2. Angular momentum operators and its representation in spherical coordinates, | | | | commutation relations, eigen values and eigen functions of Lz and L ² . | | | | 3. Ladder operators and eigen values, Spherical harmonics and its expressions, | | | | Spin angular momentum, Pauli's spin matrices. | | | III | Theory of Scattering | 18 | | | 1. Scattering cross section, differential scattering cross section, total scattering | | | | cross section, scattering amplitude,
relation between scattering cross section | | | | and scattering amplitude, quantum theory of scattering. | | | | 2. Born Approximation, condition for the validity of Born approximation. | | | | 3. Method of partial waves analysis, optical theorem, phase shift, dependence of | | | *** | phase shift on potential, application: scattering by a perfectly rigid sphere. | 10 | | IV | Approximation methods | 18 | | | 1. Time-independent perturbation theory for non-degenerate and degenerate | | | | systems up to first and second order and its application for He-atom and Stark | | | | effect in hydrogen atom. | | | | 2. Variational (Rayleigh-Ritz) method and its application to the ground state He | | | | atom. | | | | 3. JWKB approximation, condition of validity, connection formulae, | | | | probability of penetration of a potential barrier. | | | | 4. Time dependent perturbation theory (Constant perturbation). | 1.0 | | V | Many -electron atoms and Schrödinger relativistic equation | 18 | | | 1. The central field approximation, Thomas-Fermi statistical model, Hartree's | | | | method of self- consistent field. | | | | 2. Klein Gordon equations, probability and current density, Klein Gordon | | | | equation in electromagnetic field, Hydrogen atom, short comings of Klein | | | | Gordon equation. | | | | 3. Dirac's relativistic equation for free electron, Dirac's matrices, Dirac's | | | | equation in electromagnetic field, Hydrogen atom and hyperfine splitting, | | | | Negative energy. | <u> </u> | **Keywords:** Schrodinger wave equation, Rigid rotator, Scattering amplitude, Perturbation theory, Klein Gordon equation. # Part C-Learning Resources #### **Text Books, Reference Books, Other resources** # **Suggested Readings:** - 1. Joachim-Ernst Berendt, The World Is Sound: Nada Brahma - 2. GhatakAjoy and Lokenathan S., "Quantum mechanics (theory and applications)" (6th edition)—, McMillan India Ltd. - 3. Griffiths David J. and Schroeter Darrel F., "Introduction to quantum Mechanics" (Third edition), Cambridge university press. - 4. Schiff Leonard I., "Quantum mechanics", McGRaw-Hill Book company. - 5. Satya Prakash, "Adv. Quantum Mechanics", KedarNath Ram Nath& Co. - 6. Rajput B.S., "Adv. quantum mechanics", PragatiPrakashan. - 7. Agrawal B.K. and Hariprakash, "Quantum Mechanics", Prentie Hall of India, Pvt. Limited, New Delhi. - 8. Sakurai Jun John and Napolitano Jim, "Modern Quantum Mechanics", Addison-Wesley, 2011. - 9. NouredineZettili, "Quantum Mechanics: Concepts and Applications" Wiley India, 2016 https://www.youtube.com/watch?v=Ijk5dIrYip8 https://iqti.iisc.ac.in/wp-content/uploads/2021/06/QM Griffiths.pdf https://nptel.ac.in/courses/115106066 https://archive.nptel.ac.in/courses/115/108/115108074/ https://www.youtube.com/watch?v=liQoSIaYBJk https://www.youtube.com/watch?v=UVkTuOwfOh0 https://www.youtube.com/watch?v=KicQaMC9pG8 https://www.youtube.com/watch?v=ZLP-EQ9lsU8 #### Part D-Assessment and Evaluation # **Suggested Continuous Evaluation Methods:** Maximum Marks: 100 Continuous Comprehensive Evaluation (CCE): 40 Marks University Exam (UE):60 Marks | Internal Assessment:40 | | | |--------------------------------------|----------------------------------|----------| | MarksContinuous | Class Test | 20 | | Comprehensive Evaluation (CCE) | Assignment/Presentation | 20 | | External Assessment: 60 Marks | Section(A): Very Short Questions | 5x1=5 | | University Exam Section | Section (B): Short Questions | 5x4=20 | | Time: 03.00 Hours | Section (C):Long Questions | 5x7 = 35 | | | | | | | | P | art A Intro | duction | | | | |----------------|--|--------------|--|----------------------|-------------|----------------------------|--| | Progr | am:PG | Class:M. | Sc. | Year:I(II Semest | ter) | Session:2025-26 | | | Subje | ct:Physics Practical | | | | | | | | 1 | Course Code | | | | | | | | 2 | Course Title | | | Lab |)-I | | | | 3 | Course Type (Core C
Discipline Specific El | | Core Course (PC-21) | | | | | | 4 | Pre-requisite (if any) | | To Study this course a student must have UG degree in physics. | | | | | | 5 | Course Learning out
(CLO) | | | | | | | | 6 | Credit Value | | 3. Verify lav | 4 | J14. | | | | 7 | Total Marks | | Max. Marks | : 100 | Min. Pa | ssing Marks:40 | | | <u> </u> | I OWN IVINI | Part R | | of the Course | 1,1111, 1 0 | BBIII WILLIAM TO | | | | Total number Pi | | | eek): 02 hours pe | r credit | per week | | | S. N. | | List | of experimen | ts | | No. of Lectures (per week) | | | 1. | Study of phonon dispervibrations in crystal. | rsion curve | es of linear m | ono and diatomic l | attice | 02 hours per credit per | | | 2. | To study the V-I chara negative resistance reg | | of a tunnel dio | de and to determin | e its | week | | | 3. | Study of photoconduction constant irradiation an | tivity of ca | dmium sulphi | de (CdS) photo reg | gister at | | | | 4. | Identification of charg effect. | | and N-type s | emiconductor usin | g Hall | | | | 5. | Study of V-I character oscillator. | istic curve | of UJT and th | eir use as relaxatio | n | | | | 6. | Study of V-I character | istic curve | of Gunn diod | e. | | | | | 7. | To verify De Morgan's | | | | | | | | 8. | Verification of the trut | | Half adder ci | rcuit. | | | | | 9. | Verification of the trut | | | | | | | | 10. | To verify laws of Boo | | | | | | | | | , , , | | | Resources | | | | | | Tex | | | oks, Other resour | ces | | | | Sugge | ested Readings: | 200113, 1 | | one resour | | | | | ~~ <u>~55°</u> | | | | | | | | - 1. Solid State Electronic Devices, Ben G. Streetman, Sanjay Banerjee for Semiconductor theory, V-I characteristics - 2. Electronic Devices and Circuit Theory, Robert L. Boylestad for UJT, Tunnel diode, photoconductivity - 3. Electronic Principles, Albert Malvino, David Bates for Practical electronics, diode characteristics. - 4. Digital Logic and Computer Design, M. Morris Mano for Flip-flops, adders, subtractors - 5. Introduction to Solid State Physics, Charles Kittel for Phonon dispersion, crystal lattice theory - 1. https://vlab.amrita.edu/index.php?sub=59&brch=165 - 2. https://vlab.amrita.edu/?sub=3&brch=81&sim=399&cnt=1 - **3.** https://de-iitr.vlabs.ac.in/exp/truth-tables-flip-flops/simulation.html - 4. https://me-iitr.vlabs.ac.in/exp/gunn-diode/simulation.html # Part D-Assessment and Evaluation # **Suggested Continuous Evaluation Methods:** | Internal Assessment | Marks | External Assessment | Marks | |---|----------|--------------------------|-------| | Lab Record/Class Interaction /Quiz | 15 | Viva Voce on Practical | 30 | | Attendance in the lab | 10 | | | | Assignments (Charts/ Model Seminar / Rural
Service/ Technology Dissemination/ Report of
Excursion/ Lab Visits/ Survey / Industrial visit) | 15 | Table work / Experiments | 30 | | TOTAL | 30 | | 60 | | A 3 / 4* | <u> </u> | | | | | | | Part A Inti | oduction | | | | |-------|---|------------------------------------|---|----------------------------|----------------------|-------------|----------------------------| | Progr | ram: PG | Class: M.Sc. | | Year:I (II S | emester) | Session | 2025-26 | | Subje | ect:Physics | | | | | | | | 1 | Course Code | | | | | | | | 2 | Course Title | | | | Lab -II | | | | 3 | Course Type (Co | re Course/ | | Core | Course (PC | C-22) | | | | Discipline Specifi | | | | ` | , | | | 4 | Pre-requisite (if any) To Study this course a student must have U physics. | | | | | | G degree in | | 5 | Course Learning (CLO) | On succes to: 1. Calcula 2. Determ | esful completi
nte e/m ratio u
nine Young's n | sing Zeeman
nodulus and | principle. Poisson's | ratio. | | | | Explore optical dispersion and quantify refra variation using Cauchy's formula. Determine Curie temperature and dielectric of ferromagnetic material. Study the characteristics of thermistors. | | | | | | | | 6 | Credit Value | | | | 4 | | | | 7 | Total Marks | | Max. Mar | ks: 100 | Min. | Passing M | arks:40 | | | | | | of the Cours | | | | | | Total Numbe | er of Lectures | (hours per | week): 02 ho | urs per cred | lit per wee | ek | | S.N. | | | Topics | | | | No. of Lectures (per week) | | 1. | Determination of interferometer. | e/m of electron | on by Zee | man principl | e using Feb | ory Perot | 02 hours
per credit | | 2. | To determine Youn method of interfere | | nd Poisson' | s ratio of a gla | ss plate using | g Cornu's | per week | | 3. | To study the variati and Cauchy's dispe | | e index of th | e material of p | orism with wa | avelength | | | 4. | To determine dielection (BaTiO ₃). | etric constant a | nd Curie te | mperature of f | erromagnetic | material | | | 5. | Study the character | istic curves of | Thermistor | | | | | | 6. | Determination of M method. | Iagnetic Susce | ptibility of l | Paramagnetic | solution by (| Quincke's | | | 7. | To generate a sinusoidal waveform using a function generator and measure its frequency and voltage amplitude using a Digital Storage Oscilloscope (DSO). | | | | | | | | 8. | To determine the co | | | | 4 | | | | 9. | Study of different t | | | | | | | | 10. | To Compare the ca | | | | | | | | | | | | ng Resources | | | | | | | Text Books, F | keierence E | ooks, Otner | resources | | | #### **Suggested Readings:** - 9. Advanced Practical Physics, B.L.
Worsnop& H.T. Flint for Interference, optical constants - 10. B.Sc. Practical Physics, C.L. Arora for All listed experiments - 11. Elements of Solid State Physics, J.P. Srivastava for Magnetic susceptibility, dielectric constant - 12. Introduction to Electrodynamics, David J. Griffiths for e/m of electron, magnetic fields - 13. Engineering Physics Lab Manual, S. P. Singh for Dielectrics, thermistors, bridges - 14. Modern Experimental Physics, A.C. Melissinos for Fabry-Perot, Zeeman effect #### Suggested equivalent online courses: https://ph1-nitk.vlabs.ac.in/exp/zeeman-effect/procedure.html https://vlab.amrita.edu/index.php?sub=1&brch=282&sim=1005&cnt=1 https://asnm-iitkgp.vlabs.ac.in/exp/de-sauty-bridge/ https://sl-coep.vlabs.ac.in/exp/temperature-sensor/ #### **Part D-Assessment and Evaluation** # **Suggested Continuous Evaluation Methods:** | Internal Assessment | Marks | External Assessment | Marks | |---|-------|--------------------------|-------| | Lab Record/Class Interaction /Quiz | 15 | Viva Voce on Practical | 30 | | Attendance in the lab | 10 | | | | Assignments (Charts/ Model Seminar / Rural
Service/ Technology Dissemination/ Report of
Excursion/ Lab Visits/ Survey / Industrial visit) | 15 | Table work / Experiments | 30 | | TOTAL | 40 | | 60 | | Any mamarks/suggestions | | | |