Semester III

Paper MHG-301: Human Molecular Genetics and Human Genomics

Unit I
1. Genetic mapping of Mendelian and complex characters:
 1.1 Identifying recombinants and non-recombinants in pedigrees
 1.2 Genetic and physical map distances
 1.3 Genetic markers
2. Mapping of genetic traits:
 2.1 Two-point mapping- LOD score analysis
 2.2 Multipoint mapping
 2.3 Homozygosity mapping
3. Genetic mapping of complex traits; Difficulties in mapping
 3.1 Allele sharing methods- affected sib pair analysis
 3.2 Allelic association, Linkage disequilibrium mapping, Transmission disequilibrium test
4. Physical mapping of the human genome: Low resolution mapping- Cell hybrids, mini- and microcells, synteny of genes, Radiation hybrid mapping.

Unit II
5. Integration of cytogenetic, genetic and physical maps
6. Human genome mapping: Assembly of clone contigs and identifying genes in cloned DNA
7. History, HGP organization and goals of human genome project
8. The Genome projects:
 8.1 Mapping strategies, current status of various maps; DNA segment nomenclature
 8.2 ELSI
 8.3 Benefits & patenting of genetic materials

Unit III
9. Human genome diversity project (HGDP): Concept and goals
10. Bioethics: Definition, history, principles & Theories
11. Comparative genomics - Characteristics of genomes of human and other model organisms (yeast, Caenorhabditis elegans, Drosophila, Fungus and mouse)
12. Organization of human genome:
 12.1 Mitochondrial genome
 12.2 Nuclear genome - Gross base composition, gene density, CpG islands

Unit IV
13. Human genome structure:
 13.1 RNA-encoding genes, functionally identical/similar genes
 13.2 Diversity in size and organization of genes
 13.2 Pseudogenes
14. Functional genomics - ESTs, Transcriptosome, Proteome, Multiplex and DNA microarray
 (chip) based analysis
15. Gene families in human genome
 15.1 Multigene families - Classical gene families, families with large conserved domains,
 families with small conserved domains
 15.2 Gene super families
 15.3 Gene families in clusters
16. DNA testing
 16.1 Direct and indirect testing (gene tracking) in individuals
 16.2 DNA tests for identity and relationships including forensic applications
 16.3 Population screening- ethics, organization and advantages
Paper MHG-302: Clinical Genetics and Genetic Counseling

Unit I
1. An overview of the genetic basis of syndromes and disorders
2. Monogenic diseases with well known molecular pathology
 2.1. Cystic fibrosis
 2.2. Tay-Sachs Syndrome
 2.3. Marfan syndrome
3. Inborn errors of metabolism and their genetic bases
 3.1 Phenylketonuria
 3.2 Mucopolysaccharidosis
 3.3 Galactosemia
4. Neurogenetic disorders
 4.1 Major regions of human brain and nerve conduction
 4.2 Charcot-Marie tooth syndrome. Spino-muscular atrophy
 4.3 Alzheimer’s disease

Unit II
5. Syndromes due to triplet nucleotide expansion
6. Muscle genetic disorders
 6.1 Dystrophies (Duchenne Muscular dystrophy and Becker Muscular Dystrophy)
 6.2 Myotonias
 6.3 Myopathies
7. Genetic disorders of Haemopoetic systems
 7.1 Overview of Blood cell types and haemoglobin
 7.2 Sickle cell anemia
 7.3 Thalassemias
 7.4 Hemophilias
8. Genetic disorders of eye
 8.1 Colour Blindness
 8.2 Retinitis pigmentosa
 8.3 Glaucoma
 8.4 Cataracts

Unit III
9. Genetic disorders of skeleton
10. Genetic disorders of skin
11. Syndromes:
 11.1 Genomic syndromes: Neurofibromatosis I syndrome
 11.2 Genome imprinting: Prader-Willi and Angelman syndromes, Beckwith-Wiedeman syndrome
12. Cancers and cancer-prone syndromes
 12.1 Haematological malignancies
 12.2 Retinoblastoma, Wilm’s tumour, Colorectal cancer
 12.3 DNA-repair deficiency syndromes
 12.4 Breast cancer

Unit IV
13. Complex polygenic syndromes
 13.1 Hyperlipidemia
 13.2 Atherosclerosis
 13.3 Diabetes mellitus
14. Mitochondrial syndromes
15. Management of genetic disorders
16. Historical overview (philosophy & ethos) and Components of genetic counseling I:
 16.1 Indications for and purpose
 16.2 Information gathering and construction of pedigrees
16.3 Medical Genetic evaluation
16.3.1 Basic components of Medical History
16.3.2 Past medical history, social & family history

Unit V
17. Components of genetic counseling II:
 17.1 Physical examination, General and dysmorphology examination
 17.2 Documentation, Legal and ethical considerations
18. Patterns of inheritance, risk assessment and counseling in common Mendelian and Multifactor syndromes
19. Genetic testing: biochemical & molecular tests
 19.1 In children
 19.2 Presymptomatic testing for late onset diseases (predictive medicine)
20. Prenatal and Preimplantation diagnosis
 20.1 Indications for prenatal diagnosis
 20.2 Indications for chromosomal testing
 20.3 Noninvasive methods
 20.4 Invasive methods

Recommended Books
1. Thompson & Thompson, Genetics in Medicine, 7th Ed., Nuusbaum et al, Elsevier, 2007
3. New Clinical Genetics, Read & Donnai, Scion, 2007
5. Genetics for Healthcare Professionals, Skirton & Patch, Bios, 2002
8. Prenatal Medicine, Vugt & Shulman, Informa Healthcare, 2006
10. Neural tube defects, Oppenheimer, Informa, 2007
14. Introduction to Risk Calculation in Genetic Counselling, Young Oxford 1999
Paper MHG-303: Recombinant DNA Technology and Molecular Diagnostics in Human Diseases

Unit I
1. Enzymes used in DNA technology
 1.1 Restriction and modification enzymes
 1.2 Other nucleases
 1.3 Polymerases
 1.4 Ligase, kinases and phosphatases
2. Cloning vectors
 2.1 Plasmids
 2.2 Phages
 2.3 Cosmids
 2.4 Artificial chromosomes
 2.5 Shuttle vectors
 2.6 Expression vectors
3. Cloning Techniques
 3.1 Isolation & purification of genomic & plasmid DNA & RNA
 3.2 Gel electrophoresis of nucleic acids (RNA & DNA); Pulse field gel electrophoresis
 3.3 Construction of genomic libraries
 3.4 Construction of cDNA libraries
4. Microcloning and Positional cloning: RFLP mapping, chromosome walking and jumping

Unit II
5. Screening of clones from libraries
 5.1 Expression based screening
 5.2 Interaction based screening: yeast two-hybrid system
 5.3 Preparation of probes
 5.4 Restriction mapping
6. Principles of hybridizations and hybridization based techniques:
 6.1 Colony, plaque, Southern, Northern and in situ hybridizations
 6.2 ELISA, western and southwestern blotting
 6.3 Microarray based detections
7. Characterization of clones
 7.1 DNA sequencing methods
 7.2 S1 nuclease and RNase mapping of nascent RNAs

Unit III
9. Oligonucleotide synthesis
10. Principles & applications of Polymerase Chain Reaction (Types)
11 DNA fingerprinting
12 Mutagenesis
 12.1 Site directed mutagenesis
 12.2 Transposon mutagenesis
 12.3 Construction of knockout mutants

Unit IV
13. Gene transfer techniques
 13.1 Microinjection
 13.2 Transfection of cells: Principles and methods
14. Germ line transformation in Drosophila, transgenic and knock out mice: Strategies and methods
15. Applications of Recombinant DNA Technology
 15.1 Monitoring of gene expression in live cells
 15.2 Molecular genetic analysis of human diseases
 15.3 Biosafety & ethical considerations
16. Gene therapy & Stem cells:
 17.1 Somatic and germ line gene therapy
 17.2 DNA drugs and vaccines
 17.3 Stem Cells: Type, sources, culture and applications in therapy

Unit V Molecular Diagnostics (General ideas)
17. Testing DNA variation for diseases association
 17.1 SNPs; SNPs & Diseases
 17.2 Methods of SNP Typing: Brief idea of Traditional approach, Microchip (Affymetrix) & Taqman
18. Microarray approach to gene expression analysis (Brief idea)
 18.1 DNA microarray platforms
 18.2 cDNA array
 18.3 oligonucleotide arrays
 18.4 Concept of genome-wide association studies (GWAS)
 18.5 SAGE, CGH, Array CGH, SNP arrays
19. HLA Typing using molecular methods (Brief idea)
 19.1 PCR with sequence-specific primer
 19.2 Sequence-specific oligonucleotide probe hybridization
 19.3 Sequence-based HLA typing
 19.4 Methods based on determination of conformation: SSC polymorphism, Heteroduplex analysis
20. Methods for analysis of DNA Methylation (Brief idea)
 20.1 Bisulphite modification
 20.2 Methylation-specific PCR
 20.3 Real time PCR methods
 20.4 Methylation-sensitive SSC analysis
 20.5 Profiling and arrays

Recommended Books
2. Genes and Genome, Singer & Berg, USB, 1991
3. PCR, Hughes & Moody, Scion, 2007
11. DNA Science Micklos and Freyer Cold Spring Harbor 1990
Paper MHG-304: Immunogenetics and Molecular Genetics of Human Pathogens

Unit I
1. General introduction to immune system
 1.1 Innate and adaptive immunity
 1.2 Immune responses
 1.3 Antigens & antibodies
 1.4 cells and organs of the immune system
2. Antigens & antibodies
 2.1 Immunogenicity vs antigenicity
 2.2 Factors influencing immunogenicity
 2.3 Structure and function of antibody: Ig G, Ig M, Ig A, Ig E & Ig D
 2.4 Antigen-antibody interactions
3. Immunoglobulin -I
 3.1 The immunoglobulin super family
 3.2 Organization of Ig genes
4. Immunoglobulin -II
 4.2 Expression of Ig genes
 4.3 Regulation of Ig gene transcription

Unit II
5. Generation of antibody diversity and Antibody engineering
6. T-Cell receptor
 6.1 The T-cell receptor
 6.2 Organization of TCR gene loci
 6.3 Generation of TCR diversity
7. Major Histocompatibility Complex molecules (MHC)
 7.1 General organization & inheritance
 7.2 MHC molecules & genes
 7.3 Regulation of MHC Expression
8. The HLA complex I:
 8.1 Organization of HLA complex
 8.2 Structure of class I and II HLA molecules

Unit III
9. The HLA Complex II:
 9.1 Expression of HLA genes
 9.2 HLA polymorphism
10. Antigen processing and presentation
11. Generation and regulation of immune responses
 11.1 Cytokines and activation of T & B cells
 11.2 Clonal selection
 11.3 Complement system
 11.4 Regulation of immune responses
 11.5 Immunological tolerance
12. Transplantation immunology: general idea of
 12.1 Allograft
 12.2 Xenograft
 12.3 Syngraft
 12.4 Graft versus host and host versus graft rejections.
Unit IV
13. Immune disorders – I
 13.1 HLA associated diseases
 13.2 Immunodeficiencies: HIV
 13.3 Auto immunity & auto immune disorders (e.g., RA/SLE/MS)
14. Immune disorders – II
 14.1 Hypersensitive reactions
 14.2 Cytokine-related diseases
 14.3 Role of MHC in disease susceptibility
15. Immune system in human health
 15.1 Immune response to infectious diseases and malignancy
 15.2 Concept of immunotherapy
 15.3 Vaccines
16. Hybridoma Technology: Production and applications of monoclonal and polyclonal antibodies

Unit V
17. Basics of Host-Pathogen interaction, evolution of pathogenicity and regulation of virulence;
 Mechanism of drug resistance in pathogens: Viruses & Bacteria
18. Molecular pathology of following pathogens: HIV, Hepatitis virus Mycobacterium tuberculosis,
19. Molecular pathology of Plasmodium, Leishmania, & Trypanosoma
20. Development and application of molecular methods in diagnosis of infectious diseases and
 pathogen detection
 20.1 Immunoproteomics
 20.2 Immunoprecipitation, Immunoblotting and Immunofluorescence.
 20.3 Expression cloning
 20.4 PCR-based detection methods, etc.

Recommended Books
2. Immunology, 6th Ed Roitt, Mosby, 2002
3. Immunology, 5th Ed., Kuby, Freeman, 2002
7. Immunology, Janeway & Travers, Garland Publishing Inc, 1994
8. Essential Immunology, Roitt Blackwell 1994
9. Immunology, Roitt et al Mosley 1993
10. Immunology -A Short Course, Benjamin Wiley-Liss 2000
11. Text Book of Immunology, Barrett Mosley 1988
13. Introductory Microbiology, Heritage et al Cambridge Univ. 1996
14. Microbiology, Pel czar et al Tata 1993
15. Molecular Diagnosis of Infectious Diseases, Reischel Humana 1998
16. Fundamentals of Immunology, William Paul, Freeman