
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Title of the Paper</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>BT-101</td>
<td>Cell Biology</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-102</td>
<td>Microbiology</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-103</td>
<td>Bioinstrumentation</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-104</td>
<td>Biomolecules and Metabolism</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-105</td>
<td>Practical-I</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-106</td>
<td>Practical-II</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-107</td>
<td>Seminar</td>
<td>Core</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>BT-108</td>
<td>Assignment</td>
<td>Core</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>BT-109</td>
<td>Comprehensive Viva Voce</td>
<td>Virtual</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Second</td>
<td>BT-201</td>
<td>Molecular Biology</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-202</td>
<td>Immuno-technology</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-203</td>
<td>Enzyme-technology</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-204</td>
<td>Environmental & Animal Biotechnology</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-205</td>
<td>Practical-I</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-206</td>
<td>Practical-II</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-207</td>
<td>Seminar</td>
<td>Core</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>BT-208</td>
<td>Assignment</td>
<td>Core</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>BT-209</td>
<td>Comprehensive Viva Voce</td>
<td>Virtual</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Third</td>
<td>BT-301</td>
<td>Bioprocess Engineering & Microbial Technology</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-302</td>
<td>Genetic Engineering & its Applications</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-303A</td>
<td>Fermentation Technology & Downstream Processing</td>
<td>Centric</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-303B</td>
<td>Biostatistics, Bioinformatics & Technical writing</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BT-304A</td>
<td>Emerging Trends in Biotechnology</td>
<td>Generic</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-304B</td>
<td>Plant Biotechnology</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BT-305</td>
<td>Practical-I</td>
<td>Core</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-306</td>
<td>Practical-II</td>
<td>Generic</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>BT-307</td>
<td>Seminar</td>
<td>Core</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>BT-308</td>
<td>Assignment</td>
<td>Core</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>BT-309</td>
<td>Comprehensive Viva Voce</td>
<td>Virtual</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Fourth</td>
<td>BT-401</td>
<td>Project Work</td>
<td>Core</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>BT-402</td>
<td>Seminar</td>
<td>Core</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>BT-403</td>
<td>Assignment</td>
<td>Core</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>BT-404</td>
<td>Comprehensive Viva Voce</td>
<td>Virtual</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

-Minimum Number of credits be earned for award of degree- 96 credits

-Valid credits 80 + Virtual credits 16

*Evaluated both by the Internal & External examiner at the time of presentation. There shall not be compulsory project works during first three semesters. There are weekly seminars and continuous internal assessment throughout the course.
1. Cell Membrane: physicochemical properties and asymmetrical organization of lipids, proteins and carbohydrates
2. Transport of small molecules across cell membranes: types and mechanism
3. Active Transport by ATP-powered pumps types: p-type, V-type, F-type ABC transporters
4. Properties and mechanisms of transporters; patch pump technique

UNIT II

1. Protein targeting - cell map: signal hypothesis and default protein secretory pathway
2. Protein targeting - endoplasmic reticulum, golgi body, lysosome and mitochondria
3. Protein glycosylation - N and O linkages
4. Transport by vesicle formation: endocytosis and exocytosis

UNIT III

1. Ultra structure and function of lysosomes
2. Ultra structure and function of peroxisomes
3. Cell motility: structure and functions of microfilaments and microtubules and intermediate filaments
4. Cell junctions: occluding junctions, anchoring junctions and communicating junctions

UNIT IV

1. Molecular mechanism of Ca++ dependent cell adhesion
2. Molecular mechanism of Ca++ independent cell adhesion
3. Organization and function of extracellular matrix in animals
4. Extra-cellular matrix receptors on animal cells: integrins

UNIT V

1. Cell Signaling: G-Protein signaling, initiation and regulation of MAP kinase and tyrosine kinase pathway
2. Molecular events accompanying eukaryotic cell cycle
3. The cell cycle control proteins: cyclins
4. Apoptosis: Morphological, biochemical changes and significance
Practical Exercises

1. Sub cellular fractionation
2. Chromosome preparation: Mitosis – Onion root tip, rat/mouse cornea, rat/mouse bone marrow, human lymphocytes
3. Chromosome preparation: Meiosis – Rat/mouse testis, Grasshopper testis
4. Polytene chromosome preparation from Drosophila salivary gland
5. Identification of tissue typing: Histological preparation of tissue
6. Identification of different biomolecules in different tissues by histochemical techniques

Reference Books

6. The Word of the Cell (1996), Becker et al
7. Cell Proliferation and Apoptosis (2003), Hughes and Mehnet
10. Harpers Biochemistry Murray et al
102. MICROBIOLOGY

UNIT I

1. Classification of Microorganisms
2. Morphology and structure of cell wall; eubacteria, archaebacteria and fungi
3. Preparation of culture media, pure culture techniques and microbial staining
4. General account and economic importance of cyanobacteria

UNIT II

1. Sterilization: physical and chemical methods
2. Microbial growth: growth curve, measurement of growth and factors affecting growth
3. Nutrition based classification of Microorganisms, Different carbon and nitrogen sources, transport of nutrition across membrane
4. Oxygen toxicity: Study of catalase, peroxidase, superoxide dismutase, mechanism of oxygen toxicity

UNIT III

1. Infection and disease, types of infection, mechanism of pathogenesis of bacterial and viral diseases
2. *Staphylococcal* and *Clostridia* food Poisoning, Bacterial Diseases: *Salmonellosis* and *Shigellosis*
3. Fungal Diseases: *Aspergillosis* and *Candidasis*
4. Viral diseases: Hepatitis B and HIV

UNIT IV

1. Viruses: types, isolation, cultivation and identification
2. Lytic and lysogenic cycle of bacteriophages
3. Life cycle of DNA viruses: SV 40, RNA viruses: Retroviruses
4. Plant viruses: TMV and Gemini

UNIT V

1. Bacterial Recombination: transformation, conjugation, transduction, F-duction
2. Chemotherapeutic agents: classification of antibiotics, broad and narrow spectrum antibiotics; antibiotics from prokaryotes
3. Anti-fungal and antiviral antibiotics, mode of action of antibiotics
4. Mechanism of drug resistance and plasmids
Practical Exercises

1. Preparation of Liquid and Solid media for growth of microorganisms.
2. Isolation and maintenance of organisms by plating, streaking and serial dilution method, slant and stab cultures, storage of microorganisms.
3. Isolation of pure cultures from soil and water
5. Microscopic examination of bacteria, Yeast and mold and study of organism by Gram’s stain, acid fast stain and staining for spores
6. Study of mutation by Ame’s Test.
7. Assay of antibiotics and demonstration of antibiotic resistance
8. Analysis of water for potability and determination of MPN.
11. One Step growth curve of coliphage.

Reference Books

103. BIOINSTRUMENTATION

UNIT I
1. Centrifugation: basic principles, types and applications
2. Photometry: basic principles, instrumentation and application of UV-visible spectrophotometry
3. Infrared (IR) spectroscopy and its applications
4. Fluorescence spectroscopy: principle, instrumentation and applications

UNIT II
1. Atomic absorption spectroscopy: principle, instrumentation and application
2. Chromatography: principle, types and applications; paper, thin layer and HPLC
3. Column chromatography: gel filtration, ion exchange and affinity chromatography
4. Electrophoresis: principle, types and applications; 2-D gel electrophoresis

UNIT III
1. Electron spin resonance (ESR) spectroscopy
2. Nuclear Magnetic resonance (NMR)
3. Circular dichorism spectroscopy (CD)
4. X-ray crystallography

UNIT IV
1. Mass spectrometry: principle and components of mass spectrometer
2. Mass analyzers: magnetic sector, time of flight (TOF), Quadruple
3. Surface plasma resonance and its applications
4. Flow cytometry: principle and applications

UNIT V
1. Microtomy and sample preparation for microscopy
2. Microscopy: basic principle and components of microscope, phase contrast and fluorescent microscopes
3. Electron microscopy: Principle and applications
4. Autoradiography: principle and applications, radioisotopes used in biology and their applications
Practical Exercises

1. Verification of Beer’s law
2. Determination of absorption maxima
3. Electrophoresis of Proteins - native and under denaturing conditions.
4. Aminoacid and carbohydrate separations by paper & thin layer chromatography
5. Gas chromatography
6. Ion exchange and gel filtration chromatography
7. Separation of subcellular organelles by differential centrifugation
8. Separation of blood cells by density gradient centrifugation

Reference Books

1. Physical Biochemistry: Applications to Biochemistry and Molecular Biology by Freifelder
2. Biochemical Techniques: Theory and Practice by Robyt and White
3. Principles of Instrumental Analysis by Skoog and West
4. Analytical Biochemistry by Holme and Peck
5. Biological Spectroscopy by Campbell and Dwek
6. Organic Spectroscopy by Kemp
8. Principles of Instrumental Analysis by Skoog, Hollar and Nicman
UNIT I

1. Carbohydrates: structure, classification, properties and functions
2. Homo and hetero polysaccharides: carbohydrate derivatives
3. Lipids classification, structure, properties and functions
4. Lipids with specific biological functions: micelles and liposomes

UNIT II

1. Amino acids: structure, classification, properties and functions, peptides and polypeptides
2. Proteins: properties, primary, secondary, tertiary and quaternary structure
3. Water soluble vitamins; Structure, distribution, interaction and functions
4. Fat soluble vitamins: structure, distribution and functions

UNIT III

1. Nucleotides: structure of purines and pyrimidine bases, nucleosides and nucleotides
2. DNA: structure and confirmation
3. DNA: denaturation, degradation, modification and repair
4. RNA: structure, types and functions of mRNA, tRNA and rRNA

UNIT IV

1. First and second laws of thermodynamics & concept of free energy
2. ATP synthesis and its importance in biological reactions
3. Carbohydrate metabolism: Basic concepts of glycolysis, Krebs cycle, glycogenesis, pentose phosphate pathway, glyconeogenesis
4. Electron transport and oxidative phosphorylation: electron carriers, complexes I to IV, chemiosmotic theory

UNIT V

1. Overview of aminoacid metabolism
2. Regulation of amino acid metabolism
3. Overview of nucleotide metabolism
4. Inborn errors of metabolism
Practical Exercises

1. Titration of amino acids.
2. Colorometric determination of pK.
3. Model building using space filling/ ball and stick models.
4. Reactions of amino acids, sugars and lipids.
5. Quantitation of proteins and sugars.
6. Analysis of oils- iodine number, saponification value, acid number.

Reference Books

2. Biochemistry by G. Zubay
3. Biochemistry by Stryer
4. Biochemistry by Garrett and Grisham
6. Biochemistry, DVoet and jGVoet, J Wiley and Sons
7. Biochemistry, D Freifilder, W.H. Freeman & Company
8. Laboratory Techniques in Biochemistry and molecular Biology, Work and Work