SEMESTER I

<table>
<thead>
<tr>
<th>Code</th>
<th>Title of Course</th>
<th>Core / Elective</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-101</td>
<td>Fundamentals of Quantitative Analysis and Separation Methods</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>PC-102</td>
<td>Stereo-chemistry & Thermo-analytical Methods</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>PC-103</td>
<td>Spectro-analytical Methods of Analysis – I</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>PC-104</td>
<td>Electro-analytical Methods of Analysis</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>PC-105</td>
<td>Laboratory-I</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>PC-106</td>
<td>Laboratory-II</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>PC-107</td>
<td>Seminar</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>PC-108</td>
<td>Assignment</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>PC-109</td>
<td>Comprehensive Viva-voce (virtual credit)</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Total Credit Value: # 24 (20 + 4 virtual credits)
SEMESTER II

<table>
<thead>
<tr>
<th>Code</th>
<th>Title of Course</th>
<th>Core / Elective</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-201</td>
<td>Environmental biotechnology</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>PC-202</td>
<td>Spectro-analytical Methods of Analysis– II</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>PC-203</td>
<td>Modern Trends in Instrumentation</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>PC-204</td>
<td>Fundamentals of Organic Reactions</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>PC-205</td>
<td>Laboratory-I</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>PC-206</td>
<td>Laboratory-II</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>PC-207</td>
<td>Seminar</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50 - 50</td>
</tr>
<tr>
<td>PC-208</td>
<td>Assignment</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50 - 50</td>
</tr>
<tr>
<td>PC-209</td>
<td>Comprehensive Viva-voce</td>
<td>Viva-voce</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50 50 100</td>
</tr>
</tbody>
</table>

Total Credit Value: # 24 (20 + 4 virtual credits)

SEMESTER III

<table>
<thead>
<tr>
<th>Code</th>
<th>Title of Course</th>
<th>Core / Elective</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-301</td>
<td>Pharmaceutical Analysis</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>PC-302</td>
<td>Principles of Pharmacology</td>
<td>Generic Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Type</td>
<td>Credits</td>
<td>ECTS</td>
<td>Practical</td>
<td>Theory</td>
<td>Total</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>PC-303</td>
<td>Principles of Drug Development</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>PC-304</td>
<td>Advanced Instrumental Methods & Pharmaceutical Biotechnology</td>
<td>Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>PC-305</td>
<td>Laboratory-I</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>PC-306</td>
<td>Laboratory-II</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>PC-307</td>
<td>Seminar</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>PC-309</td>
<td>Assignment</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>PC-309</td>
<td>Comprehensive Viva-voce (virtual credit)</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Total Credit Value: 24 (20+4 virtual credit)
<table>
<thead>
<tr>
<th>Code</th>
<th>Title of Course</th>
<th>Core / Elective</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
<th>IA</th>
<th>EA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-401</td>
<td>Clinical Research Centric</td>
<td>Centric Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>PC-402</td>
<td>Concepts of Industrial Management and Intellectual Property Rights</td>
<td>Generic Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>PC-403</td>
<td>12-16 Week project work/industrial training</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>PC-404</td>
<td>Project viva-voce</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>PC-405</td>
<td>Comprehensive viva-voce (virtual credit)</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Total Credit Value: # 24 (virtual credit)
NOTE: Lecture (L): 1 hr = 1 Credit Tutorial (T): 2 hr = 1 Credit Practical (P): 2 hr = 1 Credit

- The generic credits may be obtained from other departments/faculties/Institutes.
- Elective credits may be obtained from same or other departments of the faculty
- Minimum credits be earned for award of degree - 96 Credit (Valid credits - 80 + Virtual Credits - 16)
- Minimum credits for promotion to next semester - 12 valid credits/semester
- As part of skill development new product development will be practiced
- Every student would deliver minimum one seminar in a semester which would be evaluated.
- Comprehensive viva is based on all papers of given semester.
- The grading will be made on 10-point scale as described below:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Grade Points</th>
<th>Description</th>
<th>Range of Marks (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>10</td>
<td>Outstanding</td>
<td>90-100</td>
</tr>
<tr>
<td>A+</td>
<td>9</td>
<td>Excellent</td>
<td>80-89</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>Very good</td>
<td>70-79</td>
</tr>
<tr>
<td>B+</td>
<td>7</td>
<td>Good</td>
<td>60-69</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>Above Average</td>
<td>50-59</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>Average</td>
<td>40-49</td>
</tr>
<tr>
<td>P</td>
<td>4</td>
<td>Pass</td>
<td>35-39</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>Fail</td>
<td>0-34</td>
</tr>
<tr>
<td>Ab</td>
<td>0</td>
<td>Absent</td>
<td>Absent</td>
</tr>
</tbody>
</table>

- The Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA) will be calculated as weighted average of valid and virtual credit points secured by the student, except the credits of additional courses, if any. The SGPA and CGPA shall be rounded off up to 2 decimal places and reported in the grade sheet.
- SGPA is a measure of performance of the student in a semester. It is ratio of total credit points secured by a student in various courses registered in a semester and the total course credits taken during that semester, i.e.

\[
SGPA \ (Si) = \frac{\Sigma (Ci \times Gi)}{\Sigma Ci}
\]

where Ci is the number of credits of the ith course in a semester and Gi is the grade point scored by the student in the ith course.
• CGPA is a measure of overall cumulative performance of a student over all the semesters completed. The CGPA is the ratio of total credit points secured by a student in various courses in all the semesters completed and the sum of the total credits of all courses in all the semesters completed, i.e.

\[
CGPA = \frac{\sum (Ci \times Si)}{\sum Ci}
\]

where Si is the SGPA of the ith semester and Ci is the total number of credits in the semester.

• On completing all requirements for award of the degree, the CGPA will be calculated and this value will be indicated on the degree along with Division. The Final degree should also indicate the Division obtained as per follows:

<table>
<thead>
<tr>
<th>Division</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>First division with distinction</td>
<td>The candidate has earned minimum number of credits required for the award of the degree in first attempt with CGPA of 8.00 or above</td>
</tr>
<tr>
<td>First division</td>
<td>The candidate has earned minimum number of credits required for the award of the degree with CGPA of 6.50 or above</td>
</tr>
<tr>
<td>Second division</td>
<td>The candidate has earned minimum number of credits required for the award of the degree with CGPA of 5.00 or above but less than 6.50</td>
</tr>
<tr>
<td>Pass division</td>
<td>The candidate has earned minimum number of credits required for the award of the degree with CGPA of 4.00 or above but less than 5.00</td>
</tr>
</tbody>
</table>

• The student will be promoted to the next semester if he/ she secures at least 12 valid credits in a semester. In case the student secures less than 12 valid credits in any semester, then the student will be asked to repeat the entire semester and that semester will be treated as zero semester.

• The student should not carry more than 5 courses (combining theory and practical) in Ist year, IInd year or IIIrd year to be promoted to the next year.

• Repetition of a theory / practical course is allowed only to those candidates who get F or Ab in the course. The student has to pay the prescribed fee for repeating the course.

• On account of valid reasons, a student may withdraw from a semester. In such case the semester will be treated as zero semester.

• In case of zero semester, the student will not be promoted to the next semester till he/ she clears that semester. The UTD may allow such a student to register in the subsequent semester whenever it is offered by the concerned UTD. The student has to pay semester fee again in such cases. If the student withdraws within one month from starting of the semester then semester fee will not be charged again.

• The practical course can be repeated as and when it is offered.
• Dissertation / project report/ internship of 3-6 credits will be assessed by the internal supervisor, in general, however, UTD may get it assessed by an internal supervisor and an external expert.

• A comprehensive viva-voce of 4 virtual credits will be conducted at the end of each semester of the programme by a board of four examiners, at least ONE of whom shall be external. The grades awarded in the viva-voce shall be shown separately in the grade-sheet.

• The conversion of CGPA in to percentage will be as follow to facilitate its application in other academic matters:

 Equivalent Percentage = CGPA x10

Syllabus of M.Sc. Pharmaceutical Chemistry (2015-2016)

First Semester

PC-101: Fundamentals of Quantitative Analysis and Separation Methods

Unit-I: Concepts involved in Analysis

Role of analytical chemistry, classification of analytical methods-classical and instrumental, types of instrumental analysis, selecting analysis method, neatness and cleanliness, laboratory operations and practices, good laboratory practices, techniques of weighing, errors, volumetric glassware-cleaning and calibration of glassware, sample preparation – dissolution and decompositions, selecting and handling reagents, laboratory notebooks, safety in the analytical laboratory, calibration and detection limits, proficiency testing.

Unit-II: Separation Techniques -I

(A) Solvent Extraction: Fundamental treatment, theoretical principle, classification, and factors favouring extraction, extraction equilibria, applications.

(B) Solid phase extraction and solid phase micro extraction, applications.

(C) Ion- Exchange: Theories, use of synthetic ion exchange in separation, chelating ion exchange resins, liquid ion exchangers, experimental technique.

Unit-III: Separation Techniques -II

An introduction to chromatographic methods, paper, thin layer and column chromatography, theory of chromatography, classification of chromatographic techniques, retention time, relationship between retention time and partition coefficient, the rate of solute migration, differential migration rates, band broadening & column efficiency, kinetic variables affecting band broadening, Electrophoresis and capillary electrophoresis.
Unit-IV: Separation Techniques -III

GC, Principle of GC, plate theory for GC, instrumentation for GC, working of GC, Detectors used, applications, HPLC, Principle of HPLC, Components of HPLC, Detectors used, instrumentation, applications in qualitative and quantitative analysis, comparison of GC and HPLC.

Unit-V: Separation Techniques -IV
Size exclusion chromatography, super critical fluid chromatography, affinity chromatography, HPTLC, Ion chromatography, pyrolytic gas chromatography.
Books Recommended

Syllabus M.Sc. PC............. (2015-2016)
Unit-I: Stereochemistry

(a) Conformational analysis: Conformation of n-butane and cyclohexane, stability of conformers and energy profile diagram.

(b) Optical activity: Criteria for optical activity, stereoisomers, enantiomers and diastereomers, erythro and threo isomers, a general idea of symmetry elements.

(c) Racemic Modifications: Conglomerate, racemate and racemic solid solutions, a general idea of stereo selective synthesis.

(d) Resolution of Racemic modifications: by Chemical separation, chromatography, preferential crystallization and asymmetric transformation (a brief idea only).

Unit-II: Solution reactions: fundamental theory

Unit-III: Titrimetric and Gravimetric Methods of Analysis

General principles: Solvents in analytical chemistry, buffers, acid-base equilibria, concentration systems, stoichiometric calculation, acid-base titration, titration curves, acid base indicators, applications of acid-base titration, complexometric titration, metal-ion indicators, precipitation titration, Mohr’s titration, Volhard’s titration, adsorption indicators, Fajan’s titration, titration curves in oxidation-reduction titration, redox indicators, applications of redox titrations.

Unit-IV: Thermo-analytical Methods

Thermogravimetry, factors affecting thermogravimetric curves, derivative thermogravimetry (DTG), thermobalances, applications of thermogravimetry, differential thermal analysis, factors affecting DTA curve, instrumentation, applications of DTA.

Differential scanning calorimetry, theory, instrumentation, applications of DSC, thermometric titration, principle, classification, instrumentation and applications of thermometric titration.

Unit-V: Principles of Gravimetric Analysis

Stoichiometry of gravimetric reactions, formation and properties of precipitates, precipitation from homogeneous solution, nucleation, organic precipitations, applications of gravimetric analysis.
Books Recommended

Syllabus M.Sc. PC............ (2015-2016)
PC-103: Spectro-analytical Methods of Analysis-I

Unit-I: Colorimetry and Spectrophotometry

An introduction to spectrophotometric methods, a brief idea of wave properties of electromagnetic radiation, theory of spectrophotometry and colorimetry, conjugated dienes, woodward fieser rules for calculating absorption maxima in dienes, transition probability, types of absorption bands, types of electronic transitions, chromophores, auxochromes, absorption and intensity shift limitations of Beer's Law, classification of methods of colour measurement, instrumentation single beam and double beam, photometric error, applications of spectrophotometry to inorganic and organic compounds (quantitative calculations), spectrophotometric titration.

Unit-II: Other Spectro-analytical techniques

(A) Introduction, general principle, instruments for nephelometry and turbidimetry, applications of nephelometry and turbidimetry to analytical chemistry.
(B) Dispersion Refractometry and Flame photometry
(C) Polarometry, circular dichroism (CD) and optical rotatory dispersion (ORD).

Unit-III: Emission Spectroscopy

Elementary idea of emission spectroscopy, introduction, elementary theory, instrumentation, types of flames, interferences, factors affecting flame photometry, applications to qualitative and quantitative analysis, limitations.

Unit-IV: Fluorescence and Phosphorescence Spectrophotometry

Theory of fluorescence and phosphorescence, quantum yield, factors affecting fluorescence and phosphorescence, relation between concentration and intensity, instrumentation, applications, an elementary idea of chemiluminescence.

Unit-V: Kinetic of Slow and Fast reactions (An elementary study keeping in view its applications in analytical chemistry)

(A) Rates of chemical reaction, expression for reaction rate, rate constants, order of reaction, methods for determination of order of reaction, Arrhenius equation, Collision theory, failure of collision theory, Absolute reaction rate theory, unimolecular reactions, mathematical formulation of Lindemann’s theory, catalysed reactions, Theory of homogenous catalysed reactions, kinetics of enzyme catalysed reactions, elementary idea of micellar catalysis.

(B) Study of fast reactions by stopped flow method, relaxation methods, flash photolysis method, photochemical reactions, kinetics of photochemical combination of hydrogen and chlorine, branched chain reactions, oscillatory reactions, applications of kinetic methods in finding out optimum conditions for different reactions.
Books Recommended

Syllabus M.Sc. PC............ (2015-2016)
Unit-I: Fundamentals

Electrochemical cells, solution structure, potential in electroanalytical cells, Nernst equation, electrode potential the ideal polarized and non-polarized electrodes, faradic reaction, variables in electrochemical cells, factors affecting electrode reaction rate and current, decomposition potential, back potential and voltage.

Unit-II: Potentiometry

Introduction, reference electrodes, indicator electrodes, ion-selective electrodes and their applications in chemical analysis, instrumentation and measurement of cell unit, direct potentiometry, potentiometric titration, applications.

Unit-III: Polarography

Direct current polarography, basic principle, instrumentation, advantages and disadvantages of dropping mercury electrode, different kinds of limiting currents, components of polarographic waves, reversible and irreversible waves, pulse and A.C. polargraphy, applications of polarography to inorganic and organic compounds, elementary idea of stripping voltammetry, amperometric titrations.

Unit-IV: Conductometry and Coulometry

Conductometry as an analytical tool, applications of direct conductometric measurements, basis of conductometric titrations, applications of conductometry titration, constant current and controlled potential electro-gravimetry, separation of metals, coulometry at controlled potential, coulometry at constant current, applications.

Unit-V: Voltammetry

AC polarography, current sampled (TAST) polarography, normal pulse and differential pulse polarography, stripping voltammetry, linear sweep and cyclic voltammetry, chronopotentiometry, chronamperometry.

Books Recommended
PC -201: Environmental Biotechnology

Unit I

1. Environment: Basic concepts and issues.
2. Environment pollution: Types, Methods for measurement of pollution.

Unit II

1. Microbial waste treatment: Aerobic processes-activated sludge, trickling Filters, aerated lagoons, Oxidation ponds

Unit III

1. Biomedical waste and its management
2. Non conventional energy sources: Biofuels- Biogas, Biodiesel etc.

Unit IV

1. Biomineralization: A decontamination process of heavy metal bearing wastes.
3. Biomediation: In situ and Ex situ techniques, advantages of bioremediation, applications of genetically engineered microbes (GEM) in bioremediation.
4. Phytoremediation: Types and its applications.

Unit V

1. Hazardous waste management.
2. Basic concepts of Environmental Impact Assessment (EIA)

Books recommended
4. Introduction to Biodeterioration, D. Allsopp and Seal, ELBS / Edward Arnold.
5. Environmental Biotechnology; Theory and Applications; G M Evans and J. C. Furlong.
7. Industrial water pollution control by W. Wesley Eckenfelder Jr.
8. Environmental Science Physical Principles and applications by Egbert Boeker et al.
9. Hazardous waste management by Chales A Wentz
10. Environmental Pollution and management of Waste waters by microbes by GR Pathode and PK Goel.

Syllabus M.Sc. PC.......... (2015-2016)
PC-202: Spectroanalytical Methods of Analysis- II

Unit-I: Atomic Absorption and Emission Spectroscopy.
Theory of atomic spectroscopy, the origin of spectral transition, the populations of energy levels, the factors influencing spectral width, atomic absorption spectroscopy (AAS), instrumentation, interferences, applications, various non-flame emission sources, applications of atomic emission spectroscopy, comparison of atomic emission and atomic absorption methods, Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), instrumentation of ICP-AES, applications of ICP-AES, Comparison of ICP-AES with AAS.

Unit-II: Infrared Spectroscopy
Theory of Infrared absorption, vibrational modes, vibrational coupling, Near IR Spectroscopy, instrumentation, dispersive and non-dispersive instrument, FTIR, sampling techniques qualitative applications and interpretation of spectra, quantitative applications. A brief idea of Raman spectroscopy.

Unit-III: Nuclear Magnetic Resonance Spectroscopy
Theory of NMR, chemical shift and spin-spin splitting, relaxation process of saturation, environmental effects on NMR spectra, instrumentation, CW or FT NMR instrument, Rules governing the interpretation of first order spectra, applications to quantitative analysis.

Unit-IV: Carbon-13 NMR
Historical development, proton decoupling-broad band, Off-resonance and pulsed or gated decoupling, nuclear overhauser enhancement, polarization transfer experiments-DEPT and INEPT chemical shifts, spin-spin coupling impacts, application of 13C NMR to structure determination, two-dimensional NMR spectroscopy, principle, the COSY experiment, the COSY experiment with double quantum filter (COSY-DQF), the NOESY experiment, three-dimensional NMR experiment, APT and INADEQUATE techniques.

Unit-V: Mass Spectrometry
Theory of mass spectrometry, practical considerations, ion production, depletion of ions, ion detector, calibration, other ionization techniques: chemical ionization, fast atom bombardment (FAB), and electrospray, interpretation of the mass spectrum of the compound, Mc Lafferty rearrangement, Mass analyzers, determination of molecular formula, nitrogen rule, general fragmentation modes, applications of mass spectrometry.

Books Recommended
India Pvt. Ltd. (1994).

Syllabus M.Sc. PC............. (2015-2016)

PC-203: New trends in Instrumentation M.M.:60
Unit-I: Statistical Treatment of Data-I

Types of errors, accuracy and precision, rounding off, significant figures, normal distribution of errors, statistical treatment of finite samples (mean, median, range & average deviation), t-test, confidence interval of the mean, standard error of a mean, test of significance, comparison of two means, F-test, rejection of data, Q-test, bivariate data, Quality control charts, relationship between variables, correlation & regression, principle of least squares.

Unit-II: Statistical Treatment of Data-II

Overview of quantitative analysis of drugs, validation of analytical procedure in pharmaceutical formulation (LOD, LOQ, Robustness, Specificity, Accuracy, Precision, Selectivity, Linearity, Ruggedness, Reproducibility, Repeatability), Recovery analysis, Error bars, Study design.

Unit-III: Statistical Treatment of Data-III

Chi square, ANOVA-1 way classification, ANOVA-2 way classification, Lotka-Voltra Model and Lesle’s matrix model, Box model and Gaussian Plume Model, normal distribution, skewness.

Unit-IV: Spectro-analytical methods of analysis

Unit-V: Photoelectron Spectroscopy

Ultraviolet (U.V.) and X-ray Photoelectron Spectroscopy, basic concepts and applications. Concept of AUGER Photoelectron Spectroscopy and applications. Determination of kinetic energy of an electron by using different methods, Difference between AUGER and Fluorescence phenomenon.

Books Recommended

Syllabus M.Sc. PC............. (2015-2016)
PC -204: Fundamental of Organic Reactions

Unit-I: Nucleophilic substitution
Mechanism of SN$_1$ and SN$_2$ reactions, SN$_i$ and SET mechanism, The neighbouring group mechanism, Effects of substrate structure, Attacking nucleophile, Leaving group and reaction medium on SN$_1$ and SN$_2$ reactions, Benzyne reaction, Evidences in favour of benzyne reaction.

Unit-II: Electrophilic substitution
Electrophilic substitution reaction of benzyne, Nitration halogenations, Sulphonation, Friedel craft reaction, Energy profile diagram, The ortho/ para ratio, IPSO attack, Diazonium coupling reaction, Gattermann-koch reaction, Vilsmeir reaction.

Unit-III: Elimination reaction
Mechanism of E-1, E-2 and E1CB reactions, Difference between substitution and elimination reactions, Saytzeff rule, The Hoffmann rule, Effects of substrate structure, Nature of base, Nature of solvents and temperature on elimination reactions.

Unit-IV: Addition reaction
Electrophilic additions, Markovnikov’s rule, Peroxide effect, Hydroboration, sharpless asymmetric epoxidation, Regio and chemoselectivity, Diel’s – Alder reaction, ozonolysis, Hydrogenation of alkene and alkyne, Mechanism of Aldol, Claisen, Perkin and Benzoin condensations.

Unit-V: Free radicals
Stability of free radicals, Polymerization, halogenations of alkanes via chain reaction, Bromination by N- bromo succinimide (NBS), Addition of halogens and halogen acids, Autooxidation, Sandmeyer reaction, Hansdiecker reaction, Free radical rearrangement reaction.

Books Recommended
1. Advanced organic chemistry- reactions, mechanism and structure, Jery March, John Wiley,

Syllabus M.Sc. PC............ (2015-2016)

Third Semester
PC-301: Industrial Analysis-I

Unit – II: Toxicokinetic
Toxicology acute and chronic toxicity, LD₅₀ and ED₅₀, routes of drug administration, adverse drug reaction, adverse drug effect, therapeutic index, therapeutic drug monitoring, dose response relationship, Pharmacokinetics.

Unit -III: General Chemistry, mode of action and method of analysis of drugs belonging to following classes:

(a) **Antipyretics & analgesics**: Paracetamol, Aspirin and Ibuprofen

(b) **Antibiotics**: Ampicillin, Amoxicillin and Cloxacillin

(c) **Antifungal agents**: Clotrimazole and miconazole

Unit – IV: (a) **Sulpha drugs**: Sulphanilamide, Sulphaguanidine and Sulphadiazine

(b) **Antitubercular drugs**: Isoniazide and Rifampicin

(c) **Expectorants**: Codeine phosphate and Papaverine hydrochloride

(d) **Bronchodilators**: Ephedrine, Salbutamol and Theophylline

(e) **Hypnotics and Sedative**: Phenobarbitone

(f) **General Anesthetic**: Benzocaine

Unit – V: A brief chemistry and mode of action of following drugs (method of analysis excluded)

(a) **Cardiac glycosides**: Digoxin and Digitoxin

(b) **Antihypertensive**: Clonidine and Methyldopa

(c) **Antileprotic drugs**: Dapsone and Clofazimine

(d) **Anticancer agents**: Alkylating agents only

Books Recommended

Syllabus M.Sc. PC............ (2015-2016)

PC - 302: Principles of Pharmacology

M.M.: 60
Unit 1: Pharmacokinetics I

Physicochemical factors in transfer of drugs across membranes, Drug absorption, bioavailability and routes of administration, Distribution of drugs, Excretion of drugs, Metabolism of drugs Clinical pharmacokinetics, Clearance-distribution, Half-life, Extent and rate of bioavailability, Therapeutic drug monitoring

Unit 2: Interaction of drugs

Pharmacokinetics interactions caused by diminished drug delivery to the site of action, Pharmacokinetic interaction that increases drug delivery to the site of action.

Unit 3: Pharmacodynamics

Mechanism of drug action, Drug receptors, Receptors for physiological regulatory molecules, Physiological receptors: Structural and functional families, Regulation of receptors, Quantitation of drug-receptor interactions and effects.

Unit 4: Membrane Transportation

Unit 5: Pharmacokinetics interactions

Pharmacokinetics interactions, Age as a determinant of response to drugs, Genetic determination of the response to drugs, Pharmacodynamic characteristics of a drug that determine its use in therapy, Pharmacodynamic variability, Therapeutic Index

Books Recommended

Syllabus M.Sc. PC............ (2015-2016)

Unit I: Evaluation of the Evidence

Clinical trials, Observational studies, Drug history, Disease -induced alterations in pharmacokinetics.

Unit II: Drug development

Classification of drug, types of drug action, factor modifying drug action, Rational use of medicines, drug dosage (classification and formulation methods of powder, mixture, syrups), drug development and its regulation.

Unit III: History of pharmacopeia

Introduction of pharmacopeia (IP, BP, USP), introduction of national formularies, typical parts of monograph of Indian pharmacopeia, an introduction to content of IP.

Unit IV: Structural features and pharmacologic activity

Optical and geometric isomerism and pharmacologic activity, Influence of optical isomerism on pharmacological activity, Influence of geometrical isomerism on pharmacologic activity, Conformational isomerism and pharmacological activity, Effect of conformational isomerism on biological activity of drugs.

Unit V: Pharmacogenetics

Importance of pharmacogenetics to variability in drug response, genomic basis of pharmacogenetics, pharmacogenetics study-design consideration, pharmacogenetic phenotypes, pharmacogenetics and drug development.

Books Recommended

Syllabus M.Sc. PC............. (2015-2016)

PC 304: Advanced Instrumental Methods & Pharmaceutical Biotechnology M.M.:60
Unit - I – Diffraction Techniques

Unit - II - Industrial Process Instruments and Automatic Analysis

Overall analytical procedures for analysis of an organic and inorganic material, industrial process analyzer, infrared process analyzer. On-line potentiometric analyzer, process gas chromatography, on-line GC/Mass and GC/IR, continuous on-line process control, automatic chemical analysis, automatic elemental analyzer.

Unit III: Immunology and Immunological Preparation: Immune system, cellular humoral immunity, antigen and haptens, antigen and antibody reactions and their applications. Hypersensitivity. Active and passive immunization; Vaccines- their preparation, sterilization and storage.

Unit IV: Genetic Recombination & Antibiotics: Transformation, conjugation, transduction, protoplast fusion, gene cloning and their applications. Development of hybridoma for monoclonal antibodies. Study of drugs produced by biotechnogy such as Activase, Humulin. Historical development of antibiotics. Anti microbial agents, sulfa drugs, Penicillins broad spectrum antibiotics and methods used for their standardization.

Unit V: Fermentation technology & Microbial transformation: Historical development and scope of fermentation technology. Fermenters, its design, control of different parameters. Design of fermentation process, Isolation of fermentation products with special reference to penicillin, streptomycin, tetracycline and vitamin B₁₂.: Introduction, types of reactions mediated by microorganism, selection of organisms, bio-transformation process and its improvement with special reference to steroids.

Books Recommended

Syllabus M.Sc. PC............ (2015-2016)
Fourth Semester

PC-401: Basic Principles of Clinical Research

UNIT – I: Introduction of Clinical research
History, terminology, events: serious adverse events (SAE), investigational new drug safety reports (INDSR), reporting, investigational product (IP), principles & precaution and risk minimization, post marketing surveillance, managing blinded therapy cases, consent: informed consent, compensation: compensation for participation.

UNIT – II: Clinical trials & Good clinical practices (GCP), guidelines and related management.
GCP guidelines, principles of ICH GCP, ethical principles related to GCP, clinical trials, SOPs, regulation: obtaining clinical trial permission, application for permission, report: clinical trial report, trial management: data monitoring committee (DMC).

UNIT – III: Bioethics, devices, essential documents in clinical research
Ethics committee: independent EC & institutional EC, EC approval, quorum in EC, EC review & records, applied ethics & healthcare, contribution to clinical practices, devices: devices in clinical trials, essential documents: essential documents for the conduct of a clinical trial.

UNIT – IV: Generic drugs, herbal products, investigator in clinical trials
Comparing generic brands with original brand, herbal product: clinical trial of herbal product, investigators, laboratory, phases of trial.

UNIT- V: Bioequivalence, bioavailability & pharmacovigilence
General concepts, therapeutic equivalence evaluations: methods for determining bioequivalence, minimizing the need for bioequivalence studies, bioequivalence testing: evaluation of bioequivalence data, bioequivalence assessment and data evaluation, criteria for bioequivalence, study design, pharmacoepidemiology and pharmacovigilance.

Books Recommended
Syllabus M.Sc. PC...........(2015-2016)

UNIT – I: Concepts of Industrial Management

UNIT – II: Intellectual Property Rights

TRIPs – Its scope and options, the changing R & D processes and IPR, The IPR tool kit, patents, the patenting process, patent cooperation treaty.

UNIT – III: Intellectual Property Protections of Living Species

Compatibility between conventions, protecting inventions in biotechnology, protections of traditional knowledge, biopiracy and documenting traditional knowledge, some case studies: The basmati rice issue, revocations of turmeric patent, revocation of neem patent.

UNIT – IV: Exercising and Enforcing of Intellectual Property Rights

Rights of an IPR owner, licensing agreements, criteria for patent infringement, case studies of patent infringement, IPR – a contract, unfair competitions and control, provisions in TRIPs, some case studies.

UNIT- V: Role of Patents in the Pharmaceutical Industry

Recent changes in IPR laws impacting pharmaceutical industry, intellectual cooperation in the pharmaceutical industry, some case studies

Books Recommended

Syllabus M.Sc. PC............ (2015-2016)