JIWAJI UNIVERSITY

M.Sc. Instrumentation & Commercial Methods of Industrial Analysis

Choice Based Credit System

Course Structure, Scheme of Examination & Syllabus

2015 -2017

SEMESTER I

<table>
<thead>
<tr>
<th>Code</th>
<th>Title of Course</th>
<th>Core / Elective</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA-101</td>
<td>Fundamentals of Quantitative Analysis and Separation Methods</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>ICA-102</td>
<td>Stereo-chemistry &Thermo-analytical Methods</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>ICA-103</td>
<td>Spectro-analytical Methods of Analysis – I</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>ICA-104</td>
<td>Electro-analytical Methods of Analysis</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>ICA-105</td>
<td>Laboratory-I</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>ICA-106</td>
<td>Laboratory-II</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40 60 100</td>
</tr>
<tr>
<td>ICA-107</td>
<td>Seminar</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50 - 50</td>
</tr>
<tr>
<td>ICA-108</td>
<td>Assignment</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50 - 50</td>
</tr>
<tr>
<td>Code</td>
<td>Title of Course</td>
<td>Core / Elective</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Total Credits</td>
<td>Marks</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>ICA-201</td>
<td>Environmental and Pollution Control</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ICA-202</td>
<td>Spectro-analytical Methods of Analysis– II</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ICA-203</td>
<td>Modern Trends in Instrumentation</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ICA-204</td>
<td>Fundamentals of Organic Reactions</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ICA-205</td>
<td>Laboratory-I</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ICA-206</td>
<td>Laboratory-II</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ICA-207</td>
<td>Seminar</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>ICA-208</td>
<td>Assignment</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>ICA-209</td>
<td>Comprehensive Viva-voce (virtual credit)</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Total Credit Value: # 24 (20 + 4 virtual credits)

SEMESTER III

<table>
<thead>
<tr>
<th>Code</th>
<th>Title of Course</th>
<th>Core / Elective</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Marks</th>
</tr>
</thead>
</table>

Total Credit Value: # 24 (20 + 4 virtual credits)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>IA</th>
<th>EA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA-301</td>
<td>Industrial Analysis - I</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>ICA-302</td>
<td>Total Quality Management & ISO 9000</td>
<td>Core</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>ICA-303</td>
<td>Industrial Analysis - II</td>
<td>Centric</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>ICA-304</td>
<td>Advanced Instrumental Methods of Chemical Analysis</td>
<td>Centric/Generic</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>ICA-305</td>
<td>Laboratory-I</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>ICA-306</td>
<td>Laboratory-II</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>ICA-307</td>
<td>Seminar</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>ICA-308</td>
<td>Assignment</td>
<td>Core</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>ICA-309</td>
<td>Comprehensive Viva-voce (virtual credit)</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

Total Credit Value: 24 (20+4 virtual credit)
<table>
<thead>
<tr>
<th>Code</th>
<th>Title of Course</th>
<th>Core / Elective</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA-401</td>
<td>Industrial Analysis – III</td>
<td>Centric Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>ICA-402</td>
<td>Concepts of Industrial Management and Intellectual Property Rights</td>
<td>Generic elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>ICA-403</td>
<td>12-16 Week project work/industrial training</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>ICA-404</td>
<td>Project viva-voce</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ICA-405</td>
<td>Comprehensive viva-voce (virtual credit)</td>
<td>Core</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Total Credit Value: # 24 (virtual credit)
NOTE: Lecture (L): 1 hr = 1 Credit. Tutorial (T): 2 hr = 1 Credit. Practical (P): 2 hr = 1 Credit

- The generic credits may be obtained from other departments/faculties/Institutes.
- Elective credits may be obtained from same or other departments of the faculty.
- Minimum credits be earned for award of degree - 96 Credit (Valid credits - 80 + Virtual Credits - 16)
- Minimum credits for promotion to next semester - 12 valid credits/semester
- As part of skill development new product development will be practiced.
- Every student would deliver minimum one seminar in a semester which would be evaluated.
- Comprehensive viva is based on all papers of given semester.
- The grading will be made on 10-point scale as described below:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Grade Points</th>
<th>Description</th>
<th>Range of Marks (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>10</td>
<td>Outstanding</td>
<td>90-100</td>
</tr>
<tr>
<td>A+</td>
<td>9</td>
<td>Excellent</td>
<td>80-89</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>Very good</td>
<td>70-79</td>
</tr>
<tr>
<td>B+</td>
<td>7</td>
<td>Good</td>
<td>60-69</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>Above Average</td>
<td>50-59</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>Average</td>
<td>40-49</td>
</tr>
<tr>
<td>P</td>
<td>4</td>
<td>Pass</td>
<td>35-39</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>Fail</td>
<td>0-34</td>
</tr>
<tr>
<td>Ab</td>
<td>0</td>
<td>Absent</td>
<td>Absent</td>
</tr>
</tbody>
</table>

- The Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA) will be calculated as weighted average of valid and virtual credit points secured by the student, except the credits of additional courses, if any. The SGPA and CGPA shall be rounded off up to 2 decimal places and reported in the grade sheet.
- SGPA is a measure of performance of the student in a semester. It is ratio of total credit points secured by a student in various courses registered in a semester and the total course credits taken during that semester, i.e.

$$SGPA (Si) = \frac{\sum(Ci \times Gi)}{\sum Ci}$$

where Ci is the number of credits of the ith course in a semester and Gi is the grade point scored by the student in the ith course.
• CGPA is a measure of overall cumulative performance of a student over all the semesters completed. The CGPA is the ratio of total credit points secured by a student in various courses in all the semesters completed and the sum of the total credits of all courses in all the semesters completed, i.e.

$$CGPA = \frac{\sum (Ci \times Si)}{\sum Ci}$$

where Si is the SGPA of the ith semester and Ci is the total number of credits in the semester.

• On completing all requirements for award of the degree, the CGPA will be calculated and this value will be indicated on the degree along with Division. The Final degree should also indicate the Division obtained as per follows:

<table>
<thead>
<tr>
<th>Division</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>First division with distinction</td>
<td>The candidate has earned minimum number of credits required for the award of the degree in first attempt with CGPA of 8.00 or above</td>
</tr>
<tr>
<td>First division</td>
<td>The candidate has earned minimum number of credits required for the award of the degree with CGPA of 6.50 or above</td>
</tr>
<tr>
<td>Second division</td>
<td>The candidate has earned minimum number of credits required for the award of the degree with CGPA of 5.00 or above but less than 6.50</td>
</tr>
<tr>
<td>Pass division</td>
<td>The candidate has earned minimum number of credits required for the award of the degree with CGPA of 4.00 or above but less than 5.00</td>
</tr>
</tbody>
</table>

• The student will be promoted to the next semester if he/she secures at least 12 valid credits in a semester. In case the student secures less than 12 valid credits in any semester, then the student will be asked to repeat the entire semester and that semester will be treated as zero semester.

• The student should not carry more than 5 courses (combining theory and practical) in 1st year, 2nd year or 3rd year to be promoted to the next year.

• Repetition of a theory / practical course is allowed only to those candidates who get F or Ab in the course. The student has to pay the prescribed fee for repeating the course.

• On account of valid reasons, a student may withdraw from a semester. In such case the semester will be treated as zero semester.

• In case of zero semester, the student will not be promoted to the next semester till he/she clears that semester. The UTD may allow such a student to register in the subsequent semester whenever it is offered by the concerned UTD. The student has to pay semester fee again in such cases. If the student withdraws within one month from starting of the semester then semester fee will not be charged again.

• The practical course can be repeated as and when it is offered.
• Dissertation / project report/ internship of 3-6 credits will be assessed by the internal supervisor, in general, however, UTD may get it assessed by an internal supervisor and an external expert.

• A comprehensive viva-voce of 4 virtual credits will be conducted at the end of each semester of the programme by a board of four examiners, at least ONE of whom shall be external. The grades awarded in the viva-voce shall be shown separately in the grade-sheet.

• The conversion of CGPA in to percentage will be as follow to facilitate its application in other academic matters:

 Equivalent Percentage = CGPA x10

SYLLABUS OF M.Sc. INSTRUMENTATION & COMMERCIAL METHODS OF INDUSTRIAL ANALYSIS (2015-2016)

First Semester

ICA-101: Fundamentals of Quantitative Analysis and Separation Methods

Unit-I: Concepts involved in Analysis
Role of analytical chemistry, classification of analytical methods-classical and instrumental, types of instrumental analysis, selecting analysis method, neatness and cleanliness, laboratory operations and practices, good laboratory practices, techniques of weighing, errors, volumetric glassware-cleaning and calibration of glassware, sample preparation – dissolution and decompositions, selecting and handling reagents, laboratory notebooks, safety in the analytical laboratory, calibration and detection limits, proficiency testing.

Unit-II: Separation Techniques -I

(A) Solvent Extraction: Fundamental treatment, theoretical principle, classification, and factors favouring extraction, extraction equilibria, applications.

(B) Solid phase extraction and solid phase micro extraction, applications.

(C) Ion- Exchange: Theories, use of synthetic ion exchange in separation, chelating ion exchange resins, liquid ion exchangers, experimental technique.

Unit-III: Separation Techniques -II
An introduction to chromatographic methods, paper, thin layer and column chromatography, theory of chromatography, classification of chromatographic techniques, retention time, relationship
between retention time and partition coefficient, the rate of solute migration, differential migration rates, band broadening & column efficiency, kinetic variables affecting band broadening, Electrophoresis and capillary electrophoresis.

Unit-IV: Separation Techniques - III

GC, Principle of GC, plate theory for GC, instrumentation for GC, working of GC, Detectors used, applications, HPLC, Principle of HPLC, Components of HPLC, Detectors used, instrumentation, applications in qualitative and quantitative analysis, comparison of GC and HPLC.

Unit-V: Separation Techniques - IV
Size exclusion chromatography, super critical fluid chromatography, affinity chromatography, HPTLC, Ion chromatography, pyrolytic gas chromatography.
Books Recommended

Syllabus M.Sc. ICA.......... (2015-2016)
ICA-102: Stereochemistry and Thermo-analytical Methods

Unit-I: Stereochemistry

(a) Conformational analysis: Conformation of n-butane and cyclohexane, stability of conformers and energy profile diagram.

(b) Optical activity: Criteria for optical activity, stereoisomers, enantiomers and diastereomers, erythro and threo isomers, a general idea of symmetry elements.

(c) Racemic Modifications: Conglomerate, racemate and racemic solid solutions, a general idea of stereo selective synthesis.

(d) Resolution of Racemic modifications: by Chemical separation, chromatography, preferential crystallization and asymmetric transformation (a brief idea only).

Unit-II: Solution reactions: fundamental theory

Unit-III: Titrimetric and Gravimetric Methods of Analysis

General principles: Solvents in analytical chemistry, buffers, acid-base equilibria, concentration systems, stoichiometric calculation, acid-base titration, titration curves, acid base indicators, applications of acid-base titration, complexometric titration, metal-ion indicators, precipitation titration, Mohr’s titration, Volhard’s titration, adsorption indicators, Fajian’s titration, titration curves in oxidation-reduction titration, redox indicators, applications of redox titrations.

Unit-IV: Thermo-analytical Methods

Thermogravimetry, factors affecting thermogravimetric curves, derivative thermogravimetry (DTG), thermobalances, applications of thermogravimetry, differential thermal analysis, factors affecting DTA curve, instrumentation, applications of DTA.

Differential scanning calorimetry, theory, instrumentation, applications of DSC, thermometric titration, principle, classification, instrumentation and applications of thermometric titration.

Unit-V: Principles of Gravimetric Analysis

Stoichiometry of gravimetric reactions, formation and properties of precipitates, precipitation from homogeneous solution, nucleation, organic precipitations, applications of gravimetric analysis.
Books Recommended

Syllabus M.Sc. ICA............ (2015-2016)
ICA-103: Spectro-analytical Methods of Analysis-I

Unit-I: Colorimetry and Spectrophotometry

An introduction to spectrophotometric methods, a brief idea of wave properties of electromagnetic radiation, theory of spectrophotometry and colorimetry, conjugated dienes, woodward fieser rules for calculating absorption maxima in dienes, transition probability, types of absorption bands, types of electronic transitions, chromophores, auxochromes, absorption and intensity shift limitations of Beer's Law, classification of methods of colour measurement, instrumentation single beam and double beam, photometric error, applications of spectrophotometry to inorganic and organic compounds (quantitative calculations), spectrophotometric titration.

Unit-II: Other Spectro-analytical techniques

(A) Introduction, general principle, instruments for nephelometry and turbidimetry, applications of nephelometry and turbidimetry to analytical chemistry.
(B) Dispersion Refractometry and Flame photometry
(C) Polarometry, circular dichroism (CD) and optical rotatory dispersion (ORD).

Unit-III: Emission Spectroscopy

Elementary idea of emission spectroscopy, introduction, elementary theory, instrumentation, types of flames, interferences, factors affecting flame photometry, applications to qualitative and quantitative analysis, limitations.

Unit-IV: Fluorescence and Phosphorescence Spectrophotometry

Theory of fluorescence and phosphorescence, quantum yield, factors affecting fluorescence and phosphorescence, relation between concentration and intensity, instrumentation, applications, an elementary idea of chemiluminiscence.

Unit-V: Kinetic of Slow and Fast reactions (An elementary study keeping in view its applications in analytical chemistry)

(A) Rates of chemical reaction, expression for reaction rate, rate constants, order of reaction, methods for determination of order of reaction, Arrhenius equation, Collision theory, failure of collision theory, Absolute reaction rate theory, unimolecular reactions, mathematical formulation of Lindemann’s theory, catalysed reactions, Theory of homogenous catalysed reactions, kinetics of enzyme catalysed reactions, elementary idea of micellar catalysis.

(B) Study of fast reactions by stopped flow method, relaxation methods, flash photolysis method, photochemical reactions, kinetics of photochemical combination of hydrogen and chlorine, branched chain reactions, oscillatory reactions, applications of kinetic methods in finding out optimum conditions for different reactions.
Books Recommended

Syllabus M.Sc. ICA............ (2015-2016)
ICA-104: Electro-analytical Methods of Analysis M.M.: 60

Unit-I: Fundamentals
Electrochemical cells, solution structure, potential in electroanalytical cells, Nernst equation, electrode potential the ideal polarized and non-polarized electrodes, faradiac reaction, variables in electrochemical cells, factors affecting electrode reaction rate and current, decomposition potential, back potential and voltage.

Unit-II: Potentiometry
Introduction, reference electrodes, indicator electrodes, ion-selective electrodes and their applications in chemical analysis, instrumentation and measurement of cell unit, direct potentiometry, potentiometric titration, applications.

Unit-III: Polarography
Direct current polarography, basic principle, instrumentation, advantages and disadvantages of dropping mercury electrode, different kinds of limiting currents, components of polarographic waves, reversible and irreversible waves, pulse and A.C. polargraphy, applications of polarography to inorganic and organic compounds, elementary idea of stripping voltammetry, amperometric titrations.

Unit-IV: Conductometry and Coulometry
Conductometry as an analytical tool, applications of direct conductometric measurements, basis of conductometric titrations, applications of conductometry titration, constant current and controlled potential electro-gravimetry, separation of metals, coulometry at controlled potential, coulometry at constant current, applications.

Unit-V: Voltammetry
AC polarography, current sampled (TAST) polarography, normal pulse and differential pulse polargraphy, stripping voltammetry, linear sweep and cyclic voltammetry, chonopotentiometry, chronoamperometry.

Books Recommended

Syllabus M.Sc. ICA............ (2015-2016)
Second Semester

ICA -201: Environmental and Pollution Control

Unit-I: Air Pollution
Atmospheric pollution, classification of air pollutants, sources of air pollution and methods of control, sampling of aerosols, sampling of gaseous pollutants, analysis of SO\(_x\), NO\(_x\), CO-CO\(_2\), hydrocarbons, effects of air pollutants on animals, ozone layer, chlorofluorocarbons, acid rain, green house effect.

Unit-II: Water Pollution
Sampling and preservation of water, physical examination of water-colour, alkalinity, TDS, conductivity, temperature, odour, turbidity, hardness, chemical examination of water-determination of carbonates and bicarbonates, sulphate, chloride and fluoride, nitrite and nitrate, iron, manganese, silica, cadmium, arsenic, chromium, lead, mercury, biological examination of water-dissolved oxygen, BOD, COD, MPN. Organic pollutant analysis-phenols and detergents.

Unit-III: Water treatment
Quality of water, standards of raw and treated water, objectives of waste water treatment, A brief idea of sedimentation, coagulation and flocculation, filtration, disinfection of water, activated sludge process, trickling filters, sludge treatment and disposal.

Unit-V: (A) Soil Pollution
A brief idea of chemistry of soil. Trace element analysis in soil-B, Cd, Cu, Fe, Mn, Mo, Zn, Pb, Pesticides and pollution, classification and degradation of pesticides, methods of pesticides analysis.
(B) Noise Pollution
Sources, measurement, effects and control.

Books Recommended

Syllabus M.Sc. ICA............ (2015-2016)
ICA-202: Spectroanalytical Methods of Analysis- II

Unit-I: Atomic Absorption and Emission Spectroscopy.
Theory of atomic spectroscopy, the origin of spectral transition, the populations of energy levels, the factors influencing spectral width, atomic absorption spectroscopy (AAS), instrumentation, interferences, applications, various non-flame emission sources, applications of atomic emission spectroscopy, comparison of atomic emission and atomic absorption methods, Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), instrumentation of ICP-AES, applications of ICP-AES, Comparison of ICP-AES with AAS.

Unit-II: Infrared Spectroscopy
Theory of Infrared absorption, vibrational modes, vibrational coupling, Near IR Spectroscopy, instrumentation, dispersive and non-dispersive instrument, FTIR, sampling techniques qualitative applications and interpretation of spectra, quantitative applications. A brief idea of Raman spectroscopy.

Unit-III: Nuclear Magnetic Resonance Spectroscopy
Theory of NMR, chemical shift and spin-spin splitting, relaxation process of saturation, environmental effects on NMR spectra, instrumentation, CW or FT NMR instrument, Rules governing the interpretation of first order spectra, applications to quantitative analysis.

Unit-IV: Carbon-13 NMR
Historical development, proton decoupling-broad band, Off-resonance and pulsed or gated decoupling, nuclear overhauser enhancement, polarization transfer experiments-DEPT and INEPT chemical shifts, spin-spin coupling impacts, application of 13C NMR to structure determination, two-dimensional NMR spectroscopy, principle, the COSY experiment, the COSY experiment with double quantum filter (COSY-DQF), the NOESY experiment, three-dimensional NMR experiment, APT and INADEQUATE techniques.

Unit-V: Mass Spectrometry
Theory of mass spectrometry, practical considerations, ion production, depletion of ions, ion detector, calibration, other ionization techniques: chemical ionization, fast atom bombardment (FAB), and electrospray, interpretation of the mass spectrum of the compound, Mc Lafferty rearrangement, Mass analyzers, determination of molecular formula, nitrogen rule, general fragmentation modes, applications of mass spectrometry.

Books Recommended

Syllabus M.Sc. ICA.......... (2015-2016)
203: New trends in Instrumentation

Unit-I: Statistical Treatment of Data-I

Types of errors, accuracy and precision, rounding off, significant figures, normal distribution of errors, statistical treatment of finite samples (mean, median, range & average deviation), t-test, confidence interval of the mean, standard error of a mean, test of significance, comparison of two means, F-test, rejection of data, Q-test, bivariate data, Quality control charts, relationship between variables, correlation & regression, principle of least squares.

Unit-II: Statistical Treatment of Data-II

Overview of quantitative analysis of drugs, validation of analytical procedure in pharmaceutical formulation (LOD, LOQ, Robustness, Specificity, Accuracy, Precision, Selectivity, Linearity, Ruggedness, Reproducibility, Repeatability), Recovery analysis, Error bars, Study design.

Unit-III: Statistical Treatment of Data-III

Chi square, ANOVA-1 way classification, ANOVA-2 way classification, Lotka-Voltra Model and Leslie’s matrix model, Box model and Gaussian Plume Model, normal distribution, skewness.

Unit-IV: Spectro-analytical methods of analysis

Unit-V: Photoelectron Spectroscopy

Ultraviolet (U.V.) and X-ray Photoelectron Spectroscopy, basic concepts and applications. Concept of AUGER Photoelectron Spectroscopy and applications. Determination of kinetic energy of an electron by using different methods, Difference between AUGER and Fluorescence phenomenon.

Books Recommended

Syllabus M.Sc. ICA............ (2015-2016)
ICA -204: Fundamental of Organic Reactions

Unit-I: Nucleophilic substitution

Mechanism of SN_1 and SN_2 reactions, SN_i and SET mechanism, The neighboring group mechanism, Effects of substrate structure, Attacking nucleophile, Leaving group and reaction medium on SN_1 and SN_2 reactions, Benzyne reaction, Evidences in favour of benzyne reaction.

Unit-II: Electrophilic substitution

Electrophilic substitution reaction of benzyne, Nitration halogenations, Sulphonation, Friedel craft reaction, Energy profile diagram, The ortho/para ratio, IPSO attack, Diazonium coupling reaction, Gattermann-koch reaction, Vilsmeir reaction.

Unit-III: Elimination reaction

Mechanism of E_1, E_2 and $\text{E}_{1\text{CB}}$ reactions, Difference between substitution and elimination reactions, Saytzeff rule, The Hoffmann rule, Effects of substrate structure, Nature of base, Nature of solvents and temperature on elimination reactions.

Unit-IV: Addition reaction

Electrophilic additions, Markovnikov’s rule, Peroxide effect, Hydroboration, sharpless asymmetric epoxidation, Regio and chemoselectivity, Diel’s – Alder reaction, ozonolysis, Hydrogenation of alkene and alkynes, Mechanism of Aldol, Claisen, Perkin and Benzoin condensations.

Unit-V: Free radicals

Stability of free radicals, Polymerization, halogenations of alkanes via chain reaction, Bromination by N- bromo succinimide (NBS), Addition of halogens and halogen acids, Autooxidation, Sandmeyer reaction, Hansdiecker reaction, Free radical rearrangement reaction.

Books Recommended

Syllabus M.Sc. ICA............ (2015-2016)
Third Semester

ICA-301: Industrial Analysis-I

Unit – II: Toxicokinetic
Toxicology acute and chronic toxicity, LD50 and ED50, routes of drug administration, adverse drug reaction, adverse drug effect, therapeutic index, therapeutic drug monitoring, dose response relationship, Pharmacokinetics.

Unit -III: General Chemistry, mode of action and method of analysis of drugs belonging to following classes:
 (a) Antipyretics & analgesics: Paracetamol, Aspirin and Ibuprofen
 (b) Antibiotics: Ampicillin, Amoxicillin and Cloxacillin
 (c) Antifungal agents: Clotrimazole and miconazole

Unit – IV: (a) Sulpha drugs: Sulphanilamide, Sulphaguanidine and Sulphadiazine
 (b) Antitubercular drugs: Isoniazide and Rifampicin
 (c) Expectorants: Codeine phosphate and Papaverine hydrochloride
 (d) Bronchodilators: Ephedrine, Salbutamol and Theophylline
 (e) Hypnotics and Sedative: Phenobarbitone
 (f) General Anesthetic: Benzocaine

Unit – V: A brief chemistry and mode of action of following drugs (method of analysis excluded)
 (a) Cardiac glycosides: Digoxin and Digitoxin
 (b) Antihypertensive: Clonidine and Methyl dopa
 (c) Antileprotic drugs: Dapsone and Clofazimine
 (d) Anticancer agents: Alkylating agents only

Books Recommended

Syllabus M.Sc. ICA............. (2015-2016)
ICA - 302: Total Quality Management and ISO - 9000

Unit - I

Unit - II
Elements of TOM, total employee involvement (TEI), total waste elimination (TWE), total productive maintenance (TPM), total quality control (TQL), cost of quality, cutting the cost of quality, Quality manual.

Unit –III
(A) Kaizen: Concept and implementation, Types of Kaizen vs. Innovation
(B) Quality Circle: Concept, 4-M and 5-S concept, problem solving tools and implementation, case studies.

Unit - IV
Implementation of TOM, management of change (MOC), faces of resistance, approach to TOM, case study of total quality management (changing the company culture), control charts.

Unit – V
Quality assurance and TQM for analytical laboratories, accreditation or certification for laboratories, motivation of the analytical laboratory for TQM, quality in analytical laboratory, method validation: an essential tool in TQM, implementation of quality programmes in multifunctional laboratories, reference materials.

Books Recommended
10. B.W. Wendawiar

Syllabus M.Sc. ICA............ (2015-2016)
ICA - 303: Industrial Analysis - II

Unit - I: Analysis of Ores and Alloys

Principle of ore dressing, analysis of the following:

(i) Bauxite, Haematite (ii) Steel, Brass

(iii) Coal, Portland cement (iv) Lubricants and Oils

Unit – II: Analysis of Polymers and Cosmetics

(i) Polymers: General idea of polymers, analysis of plastics, fibers and rubbers with reference to Nylon 6, polyethylene phthalate (PET), polyester resin, phenol-formaldehyde resin, epoxy resin, polyethylene, natural rubber, styrene-butadiene rubber, analysis by IR, pyrolytic gas chromatography.

(ii) Cosmetics. General introduction, analysis of shampoo, hair spary, deodorants, sunscreen, creams and lotions.

Unit – III: Analysis of Soaps and Detergents

General idea of soaps and detergents, sampling, separation and identification of surfactants in detergent bases, determination of surfactants: anionic e.g. alkyl aryl sulphonates, cationic, non-ionic, determination of abrasives, ammonia, carbonates, carboxymethyl cellulose, ethanol and isopropyl alcohol, glycerine, silicates, sulphates, phosphates, moisture, saponification value, iodine value, acid value.

Unit – IV: Analysis of Paints, Varnish and Lacquer

General introduction, tests on the total coating; non-volatile and volatile contents, water content of paint and paint products, flash point, isolation and determination of pigment, isolation of thinner, isolation and determination of the binder content, identification of polymers, resins and oils, identification of plasticizer, analysis of the vehicle, analysis of drying oils, epoxide analysis.

Unit – V: Analysis of Glass

General introduction, constitution of glasses, methods of analysis: sampling and sample preparation, composition, analysis, chemical analysis of silicon, barium, arsenic, antimony, total (Fe$_2$O$_3$, Al$_2$O$_3$, TiO$_2$, MnO), calcium, magnesium, total alkalies (Na$_2$O + K$_2$O), boron, analysis of colouring additives [Cr, Co, Cu, Fe, Mn, Ni, Ti, (Pb & Ba)]. Application of flame and emission spectroscopy to glass analysis. A brief idea of microscopy. Blisters in glasses.

Books Recommended

Syllabus M.Sc. ICA............ (2015-2016)
ICA 304: Advanced Instrumental Methods of Chemical Analysis

M.M.: 60

Unit - I – Diffraction Techniques

Unit - II – X-ray spectroscopy and Photoacoustic Spectroscopy

X-ray absorption, instrumentation, X-ray absorption in chemical analysis, X-ray emissions, X-ray fluorescence methods, fluorescence instruments, X-ray fluorescence in analysis, particle induced X-ray emission (PIXE), Photoacoustic spectroscopy, principle, instrumentation, applications.

Unit - III: ESR Spectroscopy

General theory, instrumentation and important applications of ESR spectroscopy, spin labelling ESR Spectroscopy, Multiple Resonance ENDOR and ELDOR Effect, characterization of metal complexes by ESR.

Unit – IV: Mossbauer Spectroscopy

General theory, instrumentation and important applications of Mossbauer spectroscopy

Unit - V - Industrial Process Instruments and Automatic Analysis

Overall analytical procedures for analysis of an organic and inorganic material, industrial process analyzer, infrared process analyzer. On-line potentiometric analyzer, process gas chromatography, on-line GC/Mass and GC/IR, continuous on-line process control, automatic chemical analysis, automatic elemental analyzer.

Books Recommended

Syllabus M.Sc. ICA............. (2015-2016)
Unit - I - Analysis of Dyes
Introduction to dyes, classification and relation between colour and chemical constitution.
(i) General methods for analysis of colours used in foods, drugs and cosmetics.
(ii) Brief idea about synthesis and analysis of following classes of dyes: azo dyes, indigoid dyes, triphenyl methane dyes.

Unit - II: Analysis of Food and Food products
The chemical and nutritional composition of foods. Analysis of trace elements such as As, Cd, Pb in food. Analysis of tea, wines, milk, butter, cheese. Approximate analysis of honey. A general idea about preservatives.

Unit - III: Analysis of Pesticides and Fertilizers
(a) Pesticides: General introduction, brief classification and mode of action of pesticides. Analysis of pesticides in general with reference to DDT, dieldrin, diphacinone, heptachlor, malathion, parathion, sevin.
(b) Fertilizers: Sampling and sample preparation, determination of water, total phosphorus, potassium, total nitrogen, urea.

Unit - IV: Analysis of Petroleum and Petroleum Products
(i) Introduction, determination of flash and fire point, API Gravity, distillation of petroleum products, specific gravity of petroleum, cloud and pour points, water in petroleum products. Aniline point, neutralization value of petroleum products, lead anti-knock compounds in gasoline, sulphur in petroleum products.
(ii) A General idea of (a) Embalming chemicals (b) Dry cleaning agents and (c) Materials used in match composition.

Unit – V: Analysis of Wood and Pulp
(i) Analysis of Wood: Sampling, determination of methoxyl group in wood. A brief idea of analysis of moisture in wood chips and saw dust by toulene methods, cellulose in wood.
(ii) Analysis of Pulp: General introduction, sampling, determination of cellulose in pulp, permanganate number of pulp, copper number of pulp.

Books Recommended

UNIT – I: Concepts of Industrial Management

UNIT – II: Intellectual Property Rights

TRIPs – Its scope and options, the changing R & D processes and IPR, The IPR tool kit, patents, the patenting process, patent cooperation treaty.

UNIT – III: Intellectual Property Protections of Living Species

Compatibility between conventions, protecting inventions in biotechnology, protections of traditional knowledge, biopiracy and documenting traditional knowledge, some case studies: The basmati rice issue, revocations of turmeric patent, revocation of neem patent.

UNIT – IV: Exercising and Enforcing of Intellectual Property Rights

Rights of an IPR owner, licensing agreements, criteria for patent infringement, case studies of patent infringement, IPR – a contract, unfair competitions and control, provisions in TRIPs, some case studies.

UNIT – V: Role of Patents in the Pharmaceutical Industry

Recent changes in IPR laws impacting pharmaceutical industry, intellectual cooperation in the pharmaceutical industry, some case studies

Books Recommended

Syllabus M.Sc. ICA............ (2015-2016)