M.Sc. Zoology 2015-2017 Choice Based Credit System Course Structure and Scheme of Examination

SEMESTER I

Code	Course	C/E/S	L	T	P	Credit	Marks
CBCSZ- 101	Non-chordata	Core	3		0	3	100
CBCSZ -	Chordata	Core	3		0	3	100
CBCSZ - 103	Cell Structure and Function	Core	3		0	3	100
CBCSZ - 104	Biochemical & Molecular Techniques and Biostatistics & Bioinformatics	Core	3		0	3	100
CBCSZ - 105	Practical	Core	0		3	3	100
CBCSZ - 106	Practical	Core	0		3	3	100
CBCSZ - 107	Assignment/Skill development	Core				1	100
CBCSZ - 108	Seminar-I	Core				1	100
CBCSZ - 109	Comprehensive viva-voce exam	Virtual credit				4	100
	-					24	900

Total Credit Value: #24

SEMESTER II

Code	Course	C/E/S	L	T	P	Credit	Marks
CBCSZ - 201	Cytogenetics and Genetics	Core	3		0	3	100
CBCSZ - 202	Developmental Biology	Core	3		0	3	100
CBCSZ - 203	Histology and Molecular Histochemistry	Core	3		0	3	100
CBCSZ - 204	Biochemistry and Mammalian Physiology	Core	3		0	3	100
CBCSZ - 205	Practical	Core	0		3	3	100
CBCSZ - 206	Practical	Core	0		3	3	100
CBCSZ - 207	Assignment/Skill development	Core				1	100
CBCSZ - 208	Seminar-II	Core				1	100

CBCSZ - 209	Comprehensive viva-voce exam	Virtual credit	4	100
			24	900

Total Credit Values: #24

SEMESTER III

Code	Course	C/E/S	L	T	P	Credit	Marks
CBCSZ - 301	Animal Behaviour	Core	3		0	3	100
CBCSZ - 302	Immunology and Parasitology	Core	3		0	3	100
CBCSZ - 303	Major Elective-I	Elective C/	3		0	3	100
CBCSZ - 304	Major Elective-II	Elective C/	3		0	3	100
CBCSZ - 305	Practical	Core			3	3	100
CBCSZ - 306	Practical	Elective C			3	3	100
CBCSZ - 307	Assignment/Skill development	Elective C/G	1			1	100
CBCSZ - 308	Seminar-III	Elective C/G				1	100
CBCSZ - 309	Comprehensive viva-voce exam	Virtual credit				4	100
		•				24	900

Total Credit Values: #24

SEMESTER IV

Code	Course	C/E/S	L	T	P	Credit	Marks
CBCSZ -401	Taxonomy and Evolution	Core	3		0	3	100
CBCSZ -402	Animal Ecology	Core	3		0	3	100
CBCSZ -403	Major Elective-III	Elective C	3		0	3	100
CBCSZ -404	Major Elective-IV	Elective C	3		0	3	100
CBCSZ -405	Practical	Core			3	3	100
CBCSZ -406	Practical	Elective C			3	3	100
CBCSZ -407	Assignment/Skill development	Elective C/G	1			1	100
CBCSZ -408	Seminar-IV	Elective C/G				1	100

CBCSZ -409	Comprehensive viva-voce exam	Virtual credit	×	4	100
	£'			24	900

Major Electives

(Details will be provided with the syllabus for Sem. III & IV)

A: Aquatic Biology and Aquaculture

SEMESTER III

Code	Course	C/E/S	L	T	P	Credit	Marks
	Aquatic Ecology & Resources		3		0	3	100
	Fish Biology & Physiology		3		0	3	100
ě	Aquatic Biology & Fish Biology (Practical)				3	3	100

SEMESTER IV

Code	Course	C/E/S	L	T	P	Credit	Marks
	Fisheries & Pisciculture		3		0	3	100
	Aquaculture		3		0	3	100
	Fisheries, Pisciculture & Aquaculture (Practical)				3	3	100

B: CELLULAR NEUROBIOLOGY AND HUMAN GENETICS

SEMESTER III

Code	Course	C/E/S	L	T	P	Credit	Marks
	Cellular Neurobiology		3		0	3	100
	Methods in molecular genetic analysis		3		0	3	100
×	Methods in cell and molecular biology				3	3	100

SEMESTER IV

Code	Course	C/E/S	L	T	P	Credit	Marks
	Cellular basis of brain function		3		0	3	100
	Human genetics and Cancer		3		0	3	100
	Neurobiology and Human genetics				3	3	100

C: Endocrinology

SEMESTER III

Code	Course	C/E/S	L	T	P	Credit	Marks
	Comparative Endocrinology		3		0	3	100
	Endocrine Physiology		3		0	3	100
	General & Comparative Endocrinology & Endocrine Physiology (Practical)				3	3	100
						1.7	-

SEMESTER IV

Code	Course	C/E/S	L	T	P	Credit	Marks
	Male Reproductive Endocrinology		3		0	3	100
	Female Reproductive Endocrinology		3		0	3	100
3.	Reproductive Endocrinology (Practical)				3	3	100

D: Entomology

SEMESTER III

Code	Course	C/E/S	L	T	P	Credit	Marks
	General Entomology & Insect Morphology		3		0	3	100
	Insect Anatomy & Physiology		3		0	3	100
	General Entomology (Practical)				3	3	100

SEMESTER IV

-	Course	C/E/S	L	T	P	Credit	Marks
	Insect Taxonomy, Ecology & Development		3		0	3	100
	Applied Entomology		3		0	3	100
	Insect Taxonomy, Ecology & Development & Applied Entomology (Practical)				3	3	100

SEMESTER I CBCSZ- 101: NON CHORDATA

(Credits 3)

UNIT I

- 1. Protozoa
 - 1.1 Nucleus and reproduction
 - 1.2 Theories of the origin of metazoans
- 2. Porifera: Aquaferous system
- 3. Cnidaria: Polymorphism in Siphonophora
- 4. Annelida
 - 4.1 Adaptive radiation in polychaetes
 - 4.2 Trochophore larva

UNIT II

- 5. Insecta
- 5.1. Importance and taxonomic richness of insects
- 5.2. Internal anatomy and physiology
 - 5.2.1Nervous system
 - 5.2.2 Endocrine system and function of normones
 - 5.2.3 Circulatory system: heart and haemolymph
 - 5.2.4 Respiratory system: Aerial respiration and Aquatic respiration
 - 5.2.5 Digestive system: Structure of gut and Digestion of food
 - 5.2.6 Excretory system and waste disposal: Malpighian tubules and Nitrogen excretion
 - 5.2.7 Reproduction: Female and male systems; Oogenesis and spermatogenesis
- 5.3. Insects as friends and foes
- 5.4. General methods of insect pest management

UNIT III

- 6. Insecta
- 6.1. Sensory system
 - 6.1.1 Tactile mechanoreceptor and posicion receptor
 - 6.1.2 Compound eye
- 6.2. External anatomy
 - 6.2.1 Segmentation and tagmosis
 - 6.2.2 Integument: structure and functions of cuticle, sclerotization
- 7. Mollusca: Nervous system
- 8. Arthropoda
 - 8.1 Evolutionary significance of Trilobites
 - 8.2 Crustacean larval and their significance

IINIT IV

- 9. Echindermata: larval forms and their significance
- 10. Salient features and affinities of
 - 10.1 Placozoa
 - 10.2 Mesozoa
 - 10.3 Rotifera

- 10.4 Phoronida
- 10.5 Sipunculata
- 10.6 Hemichordata

CBCSZ-102: Chordata

(Credits 3)

UNIT I

- 1. Characteristic features and affinities of Protochordata and Cyclostomata
- 2. Origin of the following
 - 2.1 Fish
 - 2.2 Amphibian
 - 2.3 Reptile
 - 2.4 Bird
 - 2.5 Mammal

UNIT II

- 3. Adaptive radiation in vertebrates
 - 3.1 Aquatic
 - 3.2 Terrestrial
 - 3.3 Aerial
 - 3.4 Arboreal
 - 3.5 Fossorial
- 4. Parental care in amphibians
- 5. Skull in reptiles
- 6. Migration in birds
- 7. Flightless birds

UNIT III

- 8. Comparative anatomy
 - 8.1 Respiratory system: Characters of respiratory tissue, external and internal respiration,
 - 8.2 comparative account of respiratory organs
 - 8.3 Evolution of heart
 - 8.4 Evolution of aortic arches and portal systems
 - 8.5 Comparative account of jaw suspensorium and vertebral column

UNIT IV

- 9. Comparative anatomy
 - 9.1 Comparative account of limbs and girdles
 - 9.2 Evolution of urinogenital system in vertebrates
 - 9.3 Comparative account of organs of olfaction and taste
 - 9.4 Comparative anatomy of brain and spinal cord (CNS)
 - 9.5 Comparative account of peripheral and autonomic nervous system
 - 9.6 Comparative account of lateral line system

Books Recommended

1. Barnes: Invertebrate Zoology (4thed 1980, Holt Saunders International)

A)

- 2. Barnes: The Invertebrates A Synthesis (3rded 2001, Blackwell)
- 3. Hunter: Life of Invertebrates (1979, Collier Macmillan)
- 4. Marshall: Parker & Hashwell Textbook of Zoology, Vol I (7thed 1972, Macmillan)
- 5. Moore: An Introduction to the Invertebrates (2001, Cambridge University Press)
- 6. Harvey et.al: The Vertebrate Life (2006)
- 7. Colbert *et.al*: Colbert's Evolution of the Vertebrates: A History of the Backboned Animals through time (5thed, 2002, Willey-Liss)
- 8. Hildebrand: Analysis of Vertebrate Structure (4thed, 1995, John Willey)
- 9. Jordan & Verma: Chordate Zoology (1998, S.Chand)
- 10. Kotpal: The Birds (4thed, 1999, Rastogi Publications)
- 11. McFarland et.al: Vertebrate Life (1979, Macmillan Publishing)
- 12. Parker & Hashwell: Textbook of Zoology, Vol.II (1978, ELBS)
- 13. Romer & Parsons: The Vertebrate Body (6thed 1986, CBS Publishing Japan)
- 14. Sinha, Adhikari & Ganguli : Biology of Animals Vol.II (1988, New Central Book Agency)
- 15. Young: The life of Vertebrates (3rded 2006, ELBS/Oxford)
- 16. Singh: Advances in Fish Research, Vol. I, II and III (Fisheries and Fish Biology: Ed DattaMunshi) (1993, 1997and 2004, Narendra Publishing House Delhi)

CBCSZ 103: CELL STRUCTURE AND FUNCTION

(Credits 3)

UNIT I

1. Viruses

- 1.1 Structure and replication
- 1.1.1 Bacteriophage (Lambda phage)
- 1.1.2Animal DNA virus (SV 40)
- 1.1.3 Retroviruses (HIV)

2. Prokaryotes

- 2.1. Bacteria
- 2.1.1 Structure and reproduction of *E. coli*
- 2.1.2 Plasmids and their functions

UNIT II

3. Eukaryotes

- 3.1 Cell membrane
- 3.1.1 Lipid bilayer and membrane proteins
- 3.1.2 Transport across the cell membrane
- 3.1.2.1Diffusion, osmosis and measurement of osmotic pressure
- 3.1.2.2 Active transport: mechanism, energy calculations
- 3.2 Targeting and sorting of proteins
- 3.2.1 Signal peptide and SRP dependent targeting of translational complex
- 3.2.2 Processing of proteins in RER
- 3.2.3 Processing through Golgi complex: targeting to plasma membrane and lysosome
- 3.2.4 Targeting of nuclear and mitochondrial proteins

UNIT III

- 3.3 Mitochondria
- 3.3.1 Structure: assemblies of respiratory chain and F₀ F₁ ATPase
- 3.3.2 Oxidative phosphorylation: mechanism and chemiosmotic concept
- 3.3.3 Concept of free energy and bioenergetics of high energy phosphate compounds.
- 3.4 Cell signaling- Basic concepts
- 3.4.1 Chemical mediators
- 3.4.2 Cell surface and Intracellular receptors

UNIT IV

- 3.5 Apoptosis- Basic concepts
- 3.5.1 Mechanism: initiation, execution and phagocytosis
- 3.5.2 Cellular homeostasis, development and diseases
- 3.6 Cell transformation and malignancy
- 3.7 Cell cell adhesion Collagen and Non-collagen components of extra cellular matrix of animal cells, Fibronectins and Integrins, Cell adhesion proteins & their types.
- 3.8 <u>Cell junctions</u> (occluding, Anchoring & Gap junctions)

Books Recommended

Cell Structure and Function

- 1. Alberts et al: Molecular Biology of the Cell (5th ed 2008, Garland)
- 2. Lodish et al: Molecular Cell Biology (6th ed 2007, Freeman)
- 3. Stryer: Biochemistry (6th ed. 2006, Freeman)
- 4. Michael Jr: Microbiology (1993, Tata McGraw Hill)

CBCSZ 104: BIOCHEMICAL & MOLECULAR TECHNIQUES, BIOSTATISTICS AND BIOINFORMATICS

(Credits 3)

Part A: Biochemical & Molecular Techniques

UNIT I

1. Centrifugation

- 1.1 Basic principle
- 1.2 Types of rotors
- 1.3 Clinical, high speed and ultracentrifuge

2. Spectrophotometry

- 2.1 Types of spectrophotometer
- 2.2 Beer-Lambert's law, molar extinction coefficient
- 2.3 Principles of UV- Vis spectrophotometry

3. Electrophoresis

- 3.1 Principle
- 3.2 Agarose and polyacrylamide gel
- 4. Chromatography

- 4.1 Principle and types
- 4.2 Column chromatography
- 4.2.1 Gel filtration
- 4.2.2 Ion exchange & Affinity chromatography

UNIT II

- 5. Methods in molecular biology and Recombinant DNA techniques
 - 5.1 Western blotting & In situ hybridization
 - 5.2 DNA foot printing & Electrophoretic Shift Assay (EMSA)
 - 5.5 DNA sequencing
- 5.1 Restriction enzymes
 - 5.2 Cloning vectors
 - 5.3 Preparation and screening of cDNA and genomic DNA libraries
 - 5.4 Southern and Northern hybridizations
 - 5.5 Polymerase chain reaction: principle and applications

6. Types of microscope and their biological applications

- 6.1 Bright-field microscope
- 6.3 Phase contrast microscope
- 6.4 Fluorescence microscope
 - 6.5 Confocal microscope
 - 6.7 Transmission and scanning electron microscope

UNIT III

Part B: Biostastics

- 7. The mean, mode, median, Standard deviation and Standard error of classified Data
- 8. Hypothesis testing: Chi Square test, f-Test
- 9. Student's t test
- 10. Analysis of variance (one way and two way ANOVA)
- 11. Correlation & Regression

UNIT IV

Section C: Bioinformatics

- 12. Bioinformatics: Definition, history and scope
- 13. Analysis of DNA and protein sequences; molecular and genomic databases (e.g., GENEBANK, SWISS-PROT and other databases)
- 14. Introductory ideas on use of databases for sequence retrieval, similarity search and sequence alignment.
- 15. Bioinformatics in drug discovery

Books recommended

Biochemical & Molecular Techniques

- Boyer: Modern Experimental Biochemistry and Molecular biology (2nd ed 1993, Benjamin/Cumin)
- 2. Freifelder: Physical Biochemistry (2nded 1982, Freeman)
- 3. Holme and Peck: Analytical Biochemistry (3rded 1998, Tata McGraw Hill)
- 4. Plummer: An Introduction to Practical Biochemistry (3rd ed 1990, Tata-McGrawHill)

By

- 5. Switzer and Garrity: Experimental Biochemistry (92nded 1999, Freeman)
- 6. Wilson and Walker: Principles of Biochemical and Molecular Biological Techniques (6th ed 2006, Cambridge University Press)

Bioinformatics

- 1. Barnes & Gray: Bioinformatics for geneticists (2003, Wiley)
- 2. Lesk: Bioinformatics (2nded 2006, Oxford)
- 3. Westhead et al: Bioinformatics Instant Notes (Indian ed 2003, Viva Books)
- 4. Mount, Bioinformatics (2nded 2006, CBS)
- 5. Hunt and Livesey: Functional Genomics (2006, Oxford)
- 6. Campbel: Discovering Genomics, Proteomics and Bioinformatics (2006, LPE)

LABORATRORY EXERCISES CBCSZ 105: NON CHORDATA & CHORDATA

(Credits 3)

Part A: Non Chordata & Chordata (Credit 1.5)

Non Chordata

- 1. Preparation of permanent slides
 - 1.1 Protozoa: Paramecium (whole mount) and demonstration of food vacuoles, etc.
 - 1.2 Cnidaria: Bougainvillea, Sertularia, etc.
 - 1.3 Arthropoda: Cyclops, Megalopa/Zoea, spiracles of cockroach, etc.
 - 1.4 Mollusca: Glochidium larva, etc.
 - 1.5 Echinodermata: Spheredium, pedicellaria, tubefeet
- 2. Dissections
 - 2.1 Arthropoda: Salivary glands of cockroach, etc.
 - 2.2 Mollusca: nervous system of Mytilus and Aplysia/Sepia
- 3. Study of museum specimens
 - 3.1 Porifera
 - 3.2 Cnidaria
 - 3.3 Annelida
 - 3.4 Arthopoda
 - 3.5 Mollusca
 - 3.6 Echinodermata

Insects

- 1. Study of external morphology of cockroach
- 2. Internal anatomy of cockroach
 - 2.1 Alimentary canal
 - 2.2 Salivary apparatus: dissection and *in toto* stained preparation
- 3. Dissection of frontal ganglion, brain, corpora cardiac (CC), corpora allata (CA) and recurrent nerve
- 4. Dissection and mounting of prothoracic gland
- 5. Dissection of male and female reproductive systems of cockroach
- 6. Study of external morphology of honey bee and dissection of sting apparatus

7. Study of following using permanent slides/specimens: L. S. of teleotrophic and polytrophic ovarioles, T. S. of testis, and brain showing median neuro secretory cells (MNSC), whole mount of head of louse, CC & CA, and *Chironomous* larva

Chordata

- 1. Study of external features of *Branchiostoma* and permanent preparation of its oral hood, velum and pharyngeal wall
- 2. Study of whole mount preparations of following proto-chordates
 - 2.1 Doliolum, Pyrosoma, Salpa and Oikopleura
 - 2.2 T.S. through pharynx, gonads and post anal region of Branchiostoma
 - 2.3 T.S. and L.S. through proboscis of Balanoglossus
- 3. Permanent preparation of test and neural complex of Herdmania
- 4. Fossorial adaptation and urino-genital system of rat
- 5. Study of adaptive features of following:
 - 5.1 Amphibians
 - 5.2 Reptiles
 - 5.3 Birds
 - 5.4 Mammals

Fish Biology

- 1. Classification of the following locally available fishes using key
 - 1.1 Carps: Catlacatla; Labeorohita, Cirrhinamrigala
 - 1.2 Catfishes: Heteropneustesfossilis, Clariasbatrachus
- 2. Dissection and display of accessory respiratory organs of
 - 2.1 Clarias batrachus
 - 2.2 Channa sp.
 - 2.3 Heteropneustes fossilis
- 3. Study of larvivorous fishes through museum specimens
- 4. Mounting of respiratory epithelium of accessory respiratory organs of *H. fossilis* and air bladder epithelium of carp
- 5. Study of museum specimens of fishes having electric organs, venomous organs and airbreathing organs
- 6. Study of T.S. of gills, accessory respiratory organs and swim bladder from prepared slides

CBCSZ106: BIOCHEMICAL AND MOLECULAR TECHNIQUES (Credits 3)

Biochemical and Molecular Techniques

- 1. Verification of Beer's law and preparation of absorption spectrum of riboflavin
- 2. Demonstration of separation of protein by SDS-polyacrylamide gel electrophoresis
- 3. Isolation of plasmid, restriction digestion and determination of size by agarose gelelectrophoresis
- 4. pH meter and determination of pH of a buffer
- 4. Demonstration of DNA amplification by polymerase chain reaction
- 6. Isolation of genomic DNA by spooling/ precipitation method and its quantitation
- 7. Agarose gel electrophoresis
- 8. Isolation and identification of lipids by TLC
- 9. Determination of amino acids by paper chromatography

- 10. Estimations of fractionated molecules through spectrophotometric methods
 - 10.1 Protein by Biuret/Folins method
 - 10.2 DNA by diphenylamine method
 - 10.3 RNA by orcinol method

Bioinformatics & Biostatistics

- 1. Use of search engines (Google, Altavista, Dogpile, Meta-crawler)
- 2. Demonstration of web-pages related to biological information (NCBI, ExPasy)
- 3. Hands on practice to features of following databases: GenBank, PDB, DIP, PubMed, Toxnet, OMIM, Fly Base, etc.
- 4. Hands on practice to features of following software packages/tools: BLAST, Clustal-W, PHYLIP
- 5. Estimation of mean, median, mode, standard error and standard deviation
- 6. Demonstration of correlation
- 7. Working on examples of X² (Chi square) test for hypothesis testing

SEMESTER II ZOM201: CYTOGENETICS AND GENETICS

(Credits 3)

UNITI

- 1. Eukaryotic chromatin structure and chromsome organization
 - 1.1 Classes of DNA
 - 1.2 Chromosomal proteins: histones, non-histone proteins and scaffold/matrix proteins
 - 1.3 Nuclear matrix and organization of interphase nucleus
 - 1.4 Centromere, kinetochore and telomere
 - 1.5 Metaphase chromosome banding
- 2. Giant chromosome: Polytene chromosome & Lampbrush chromosome
- 3. Cell division
 - 3.1 Mitosis
 - 3.1.1 Role of maturation promoting factor and its regulation
 - 3.1.2 Chromosomal movement
 - 3.1.3 Exit from mitosis
 - 3.1.4 Cytokinesis
 - 3.2 Meiosis
 - 3.2.1 Chromosome pairing and recombination
 - 3.2.2 Genetic regulation

UNIT II

- 4. Human cytogenetics
 - 4.1 Karyotype and nomenclature of metaphase chromosome bands
 - 4.2 Chromosome anomalies and diseases
 - 4.2.1 Types of chromosomal anomalies
 - 4.2.2 Common syndromes caused by aneuploidy, mosaicism, deletion and duplication
 - 4.2.3 Chromosomal anomalies in malignancy (chronic myeloid leukemia and retinoblastoma)
 - 4.2.4 Fragile site and X-linked mental retardation

UNIT III

- 5. Mendel's laws and their chromosomal basis
- 6. Extensions of Mendelism
 - 6.1 Dominance relationships
 - 6.2 Epistasis
 - 6.3 Pleiotropy
- 7. Methods of gene mapping
 - 7.1 3-point test cross in Drosophila
 - 7.2 Gene mapping in bacteria by transformation and conjugation
- 8. Quantitative inheritance: Concept of polygene & polygenic inheritance

UNIT IV

- 9. Gene mutation and DNA repair
 - 9.1 Types of gene mutations
 - 9.2 DNA damage and repair

10. Nature of the gene and its function

- 10.1 Fine structure of gene (rII locus)
- 10.2 Regulation of gene activity in lacoperon of E.coli
- 10.3 Organization of a typical eukaryotic gene
- 10.4 Non-coding genes
- 11. Mitochondrial DNA: Organization & properties

Books Recommended

- 1. Albertset al: Molecular Biology of the Cell (2008, Garland)
- 2. Bostock& Sumner: Eukaryotic Chromosome (1987, North-Holland)
- 3. Cassimeris et al: Lewin's Cells (2011, Jones Bartlet)
- 4. Gardner et al: Principles of Genetics (2006, John Wiley)
- 5. Griffith et al: Modern Genetic Analysis (2008, Freeman)
- 6. Hartl& Jones: Essential Genetics: A Genomic perspective (2009, Jones & Bartlet)
- 7. Karp: Cell and Molecular Biology (2010, John Wiley & Sons)
- 8. Krebs et al: Lewin's Genes X (2011, Jones & Barlett)
- 9. Lodishet al: Molecular Cell Biology (2008, Freeman)
- 10. Pierce: Genetics A Conceptual Approach (2012, Freeman)
- 11. Russell: Genetics (2010, Benjamin Cummings)
- 12. Snustad& Simmons: Principles of Genetics (2012, John Wiley)

CBCSZ 202: DEVELOPMENTAL BIOLOGY

(Credits 3)

UNIT I

- 1. Introduction to Development: Generation of new cells and organs.
- 2. Cell-Cell communication in development, cell adhesion, cell migration, cell signaling, paracrine factors.
- 3. <u>Fertilization</u>: The mechanism: External fertilization in Sea Urchins, polyspermy and its restriction, internal fertilization in Mammals.
- 4. Cleavage: Pattern of cleavage, fate map, cleavage and axis formation in C. elegans.

UNIT II

- 5. Early development in Fish and Amphibians: Axis fate in Zebra fish, Amphibian cleavage and Gastrulation, mechanism of Amphibian axis fate.
- 6. Early development in Birds: Gastrulation in Avian embryo, Axis fate
- 7. Mammalian Gastrulation, Mammalian Axis fates.
- 8. Formation of neural tube, differentiation of Neurons and formation of the Brain.

UNIT III

- 9. Development of Eye and Cutaneous Appendages.
- 10. Neural Crest Cells, Pattern generation in nervous system.
- 11. The Somites and their Derivatives.
- 12. Development of Bones.
- 13. Development of Heart and formation of Blood vessels.
- 14. Development of Digestive Tube and its Derivatives.

15. Formation and development of Limbs

UNIT IV

- 16. Metamorphosis.
- 17. Regeneration in Flat worms, Hydra, Salamander
- 18. Cancer
- 19. Environment and Development
- 20. Developmental Mechanisms of Evolutionary Change

CBCSZ 203: HISTOLOGY AND MOLECULAR HISTOCHEMISTRY

(Credits 3)

UNIT I

- 1. Fixation and tissue processing
 - 1.1 Types of fixatives
 - 1.2 Chemistry of fixation
 - 1.3 Choice of fixatives
 - 1.4 Dehydration
 - 1.5 Clearing and embedding
- 2. Microtomy
 - 2.1 Types of microtome
 - 2.2 Sectioning of paraffin blocks
 - 2.3 Cryosectioning
 - 2.4 Vibratomy
- 3. Staining of paraffin sections
 - 3.1 Principle and methods of staining
 - 3.2 Histological stains: haematoxylin and eosin

UNIT II

- 4. Principles and methods of histochemical localization and identification of:
 - 4.1 Carbohydrate moieties
 - 4.1.1 Glycogen and glycoproteins with oxidizable vicinal diols by periodic acid Schiff method
 - 4.1.2 Glycoproteins with carboxyl groups and/or *O*-sulphate esters by alcian blue methods
 - 4.1.3 Role of lectin in carbohydrate histochemistry
 - 4.2 Protein end groups
 - 4.2.1 General protein localization by bromophenol blue method
 - 4.2.2 -NH₂ groups by Ninhydrin-Schiff method
 - 4.2.3 S-S- groups by performic acid-Schiff and performic acid-alcian blue methods

UNIT III

- 4.3 Lipids moieties
- 4.3.1 General lipids by Sudan black B method
- 4.3.2 Neutral lipids by Sudan III and Sudan IV methods
- 4.3.3Differentiation of neutral lipids from acidic lipids by nile blue sulphate method

- 4.4 Nucleic acids
- 4.4.1 Methyl green pyronin-Y for DNA and RNA
- 4.4.2 Feulgen reaction for DNA
- 4.5 Enzyme activity
- 4.5.1 Principles of enzyme histochemistry
- 4.5.2 Acid and alkaline phosphatases by metal precipitation and azo dye methods
- 5. Basic principles of immunohistochemistry and fluorescence staining
- 6. In situ hybridization

UNIT IV

7. Gross Histology of tissue types:

- 7.1 Connective tissue
- 7.2 Cartlage
- 7.3 Bone
- 7.4 Cerebrum, cerebellum and spinal cord
- 7.5 Heart
- 7.6 Kidney
- 7.7 Liver
- 7.8 Gall bladder
- 7.9 Lungs
- 7.10 Testis and ovary
- 7.11Thyroid gland

Books recommended

Histology & Histochemistry

- 1. Bancroft & Stevens: Theory and Practice of Histological techniques(2013, Churchill-Livingstone)
- 2. Casselman: Histochemical techniques (1959, John Wiley)
- Pearse: Histochemistry: Theoretical and Applied (Vol. I, II & III) (4thed 1980-1993, Churchill-Livingstone)
- 4. Kiernan: Histological and Histochemical Methods (4th Ed. Scion 2008)

CBCSZ204: BIOCHEMISTRY & MAMMALIAN PHYSIOLOGY (Credits 3)

Part A: BIOCHEMISTRY

UNIT I

1. Protein structure

- 1.1 Primary structure
- 1.2 Secondary structure: α-helix, β-pleated sheet
- 1.3 Tertiary structure: forces stabilizing tertiary structure
- 1.4 Quaternary structure: sub unit interaction and significance

2. Enzymes

- 2.1 Classification and nomenclature
- 2.2 Enzyme kinetics: Michaelis-Menten and Lineweaver-Burk plots, applications of Km
- 2.3. Mechanism of action
- 2.3.1 Active site & substrate binding.

- 2.3.2Chemical catalysis (chymotrypsin)
- 2.3.3 Regulation of enzyme activity

UNIT II

3. Metabolism

- 3.1 Concept of metabolic pathways and cycles
- 3.2 Central energy transduction mechanism

4. Nucleic acids

- 4.1 Structure
- 4.2 Mechanism of DNA replication
- 4.2.1DNA polymerases
- 4.3 Transcription
- 4.3.1 RNA polymerases and mechanism of RNA synthesis
- 4.4 Processing of hnRNA: Capping Poly(A) tailing & Splicing
- 4.5. Genetic code
- 4.6. Mechanism of translation
- 4.6.1. Role of ribosomes and tRNAs
- 4.6.2 Mechanism of transition in prokaryotes & companism with their of eukaryotes.

Part B: MAMMALIAN PHYSIOLOGY

UNIT III

5. Circulation

- 5.1 Blood: Haemopoiesis
- 5.2 Heart
- 5.2.1 Origin and conduction of cardiac impulse
- 5.2.2 Cardiac cycle and ECG

6. Respiration

- 6.1 Pulmonary ventilation
- 6.1.1 Respiratory centers: organization and function
- 6.1.2 Surfactant
- 6.2. Exchange and transport of respiratory gases
- 6.3 Respiratory adjustments
- 6.3.1 Hypoxia and oxygen therapy
- 6.3.2 Dyspnea

UNIT IV

7. Excretion

- 7.1 Urine formation and regulation
- 7.2 Acid-base balance and homeostasis
- 7.3 Renal function tests

8. Muscle

- 8.1 Types of contraction
- 8.2 Muscle proteins
- 8.3 Mechanism and energetics of muscle contraction

9. Digestion and nutrition: Digestion and absorption of macronutrients and their regulation

Books Recommended

Mammalian Physiology

- 1. Ganong: Review of Medical Physiology (22nd Ed 2005, Lang Medical Publications)
- 2. Guyton and Hall: Text Book of Medical Physiology (11th Ed 2006, W.B. Saunders)
- 3. Keel et al: Samson Wright's Applied Physiology (13th Ed1989, Oxford Press)
- 4. Murray et al: Harper's Illustrated Biochemistry (27th Ed 1989, Appleton & Lange)
- 5. West: Best and Taylor's Physiological Basis of Medical Practice (11th Ed 1981, Williams and Wilkins)

Biochemistry

- 1. Boyer: Concepts in Biochemistry (3rd ed. 2006, Brooks/Cole)
- 2. Lehninger, Nelson & Cox: Principles of Biochemistry (4thed, 2007, Worth),
- 3. Murray et al: Harper's Biochemistry (25th ed. 2000, Appleton & Lange)
- 4. Stryer: Biochemistry (6th ed. 2006, Freeman)
- 5. Watson et al: Molecular Biology of the Gene (2nd ed 1976, Benjamin/Cummings)
- 6. Zubay: Biochemistry (1998, McGraw-Hill)

LABORATORY EXERCISES

CBCSZ 205: CYTOGENETICS, GENETICS AND DEVELOPMENTAL BIOLOGY

(Credits 3)

Cytogenetics

- 1. Study of meiosis in grasshopper testes by squashing method
- 2. Temporary squash preparation of polytene chromosomes from salivary glands of *Drosophila*/ *Chironomous* larvae
- 3. Preparation of human karyotype
- 4. Study of sex chromatin in human female from buccal epithelial and hair budcells
- 5. Study of permanent slides for the following:
 - 5.1 Inversions in polytene chromosomes of *Drosophila*
 - 5.2 G-banded and C-banded metaphase chromosomes

Genetics

- 1. Culturing of E coli on solid and liquid media
- 2. Handling of *Drosophila* and study of its life cycle
- 3. Examination of wild type (males and females) and mutants of *Drosophila*
- 4. Sex linked inheritance in Drosophila melanogaster
- 5. Monohybrid and di-hybrid crosses in *Drosophila melanogaster*

Developmental Biology

- 1. Study of frog embryonic development through models
- 2. Collection of frog spawns and observation of different developmental stages
- 3. Study of spiral cleavage in eggs of snail
- 4. Study of embryonic development in chick through slides
- 5. Window preparation to study chick embryo development
- 6. Whole mount preparation of chick embryos at various stages of development
- 7. Observation of aristapedia and bithorax mutants of Drosophila
- 8. Study of metamorphosis in *Drosophila* larvae by ligature experiments

CBCSZ 206: HISTOLOGY, HISTOCHEMISTRY, BIOCHEMISTRY AND PHYSIOLOGY

(Credits 3)

Histology and Histochemistry

- 1. Paraffin sectioning
 - 1.1 Fixation of tissue
 - 1.2 Dehydration, clearing and embedding of tissue
 - 1.3 Sectioning and spreading of sections
- 2. Histological staining of paraffin sections using haematoxylin and eosin method
- 3. Histochemical staining of paraffin sections for demonstration of acidic glycoproteins by Alcian blue pH 2.5 method
- 4. Histochemical staining for lipids using
 - 4.1 Sudan black B method
 - 4.2 Sudan III method
 - 4.3 Sudan IV method
- 5. Demonstartion of immunohistochemical and immunofluorescence methods

Biochemistry & Physiology

- 1. Preparation of extract for enzyme assay (alkaline phosphatase)
- 2. Study of alkaline phosphatase activity
 - 2.1 Standard curve preparation
 - 2.2 Effect of enzyme concentration and determination of total and specific activity
 - 2.3 Effect of temperature on enzyme activity
 - 2.4 Effect of time on enzyme activity
 - 2.5 Effect of substrate concentration on enzyme activity
 - 2.6 Determination of Km and Vmax by Michaelis-Menten and Lineweaver-Burk
- 3. Differential leucocytes counting in blood
- 4. Determination of blood groups (ABO and Rh factor)
- 5. Estimation of ascorbic acid content in lemon extract using titration method
- 6. Preparation of casein from milk

