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   Paper PT-204  Unit III 

Interpolation 

 

 

1    Spline-Interpolation 
 

So far we have been considering interpolation by means of a single 

polynomial in the entire range. 

 

Let’s  now  consider  interpolation  using  different  polynomials  (but  of  

the  same  degree)  at different  intervals.   

 

Let the  function f(x) be defined at the nodes a = x0, x1, x2, ..., xn  = b.  

 

The  problem  now  is  to  construct  piecewise  polynomials  Sj (x)  on  

each  interval  [xj , xj+1], j  =  0, 1, 2, ..., n − 1,  so  that  the  resulting  

function  S(x)  is  an  interpolant  for  the  function f(x). 

 

The simplest such polynomials are of course, linear polynomials (straight 

lines).  The interpolating polynomial in this case is called linear  spline.  

The two biggest disadvantages of a  linear  spline  are   

 

(i) the  convergence  is  rather  slow,  and   

(ii) not  suitable  for  applications demanding smooth approximations, 

since these splines have corner at the knots. 

 

Likewise the quadratic splines have also certain disadvantages. 

 

The  most  common  and  widely  used  splines  are  cubic  splines.    

Assume  that  the  cubic polynomial Sj (x), has the following form: 

 

 Sj(x) = aj  + bj (x −xj ) + cj (x −xj )
2 + dj(x −xj )

3,  j = 0, 1, . . . ,n-1      (1) 

 

Since Sj(x) contains four unknowns, to construct n cubic polynomials 

S0(x), S1(x), ..., Sn−1(x), we  need  4n  conditions.   To  have  these  4n  

conditions,  a  cubic  spline  S(x)  for  the  function f(x) can be 

conveniently defined as follows: 
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2.   Cubic  Spline  Interpolant 

 

A function  S(x),  denoted by  Sj (x),  over  the interval  [xj , xj+1],  j  = 0, 

1, ..., n −1 is called a cubic spline interpolant if the following conditions 

hold: 

 

(i)  Sj(xj ) = fj ,     j = 0, 1, 2, ..., n. 

 

     (Cubic spline value at nodes should match with the function value)  

 

(ii)  Sj+1(xj+1) = Sj(xj+1),   j = 0, 1, 2, ..., n −2. 

 

     (Cubic spline segments value at the common nodes should match with 

each other values)  

 

(iii)  S′j+1(xJ+1) = S′j(xj+1 j = 0, 1, 2, ..., n −2. 

 

     (The value of  gradients of the cubic spline segments at the common 

nodes should match with each other)  

 

(iv)  S′′j+1(xJ+1) = S′′j(xj+1 j = 0, 1, 2, ..., n −2. 

 

     (The value of the gradient of gradients of the cubic spline segments at 

the common nodes should match with each other)  

 

 

In equation (1) for j there are four unknowns:  aj , bj , cj, and dj  and there 

are n such polynomials to  be  determined,  all  together  there  are  4n  

unknowns.   However,  conditions  (i)-(iv)  above give only (4n−2) 

equations:   

 

Condition (i) gives n+1, and each of (ii)-(iv) gives n−1 options.  

 

So, to completely determine the cubic spline, we must need two more 

equations.  To obtain these two additional equations, we can invoke 

boundary conditions. 
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If the gradient at the boundary is assumed as constant then the second  

derivative  of  S(x)  can  be  approximated as : 

S” (xo) =  S”(xn) = 0 (free or natural  boundary) 

 

As an alternative ,on the other hand, if only the first derivative is estimated, 

we can use the following boundary conditions: 

 

     S′ (xo) =  f′ (xo)    and S′ (xn) =  f′ (xn) (clamped boundary) 
 

In this presentation we will discuss only the clamped  cubic  spline 

here. 
 

3.   Spline-Interpolation for four nodes. 

 

 Lets begin with following nodes and corresponding function values. 

 

 

point 0 1 2 3 

x x0 x1 x2 x3 

f(x)  f0 f1 f2 f3 

  

From the condition (i), we immediately obtain using equation (1) 

 

a0 = f0               (at the point  0)  (2) 

a1 = f1  (at the point  1) (3) 
a2 = f2 (at the point  2) (4) 

a3 = f3 (at the point  3) (5) 

 

Setting  hj  = xj+1−xj and using conditions (ii) to (iv) we immediately get  

 

(at the point  1) 
 

a1 = a0  + b0h0 + c0(h0)
2
  +  d0(h0)

3 
(6) 

b1 = b0 + 2c0h0 + 3d0(h0)
2
  (7) 

c1 = 2c0 +6d0h0   (8) 

 

(at the point  2) 
 

a2 = a1  + b1h1 + c1(h1)
2
  +  d1(h1)

3 
(9) 
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b2 = b1 + 2c1h1 + 3d1(h1)
2
  (10) 

c2 = 2c1 +6d1h1   (11) 

 

Remaining two additional conditions are  

 

S′(x0)  =  b0  =  f′ (a)                         (at the initial point)            (12) 

and    

S′(x3)  =  b0  =  f′ (b)                         (at the last point)                (13) 

 

As a0, a1, a2  are known in terms of function values, now, eliminating b0, 

b1, d0 and d1 using equations (2) through (13), the obtained equations 

may be written in forms of matrix notation as follows: 
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Once c0, c1 and c2 are known by solving the above system of equations, 

the quantities bj  and dj  can be computed as follows: 
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4.  Algorithm for   Computing  Clamped  Cubic  Spline 

 

Inputs: 

 

(a)   The nodes x0, x1, ..., xn.  

(b)  The functional values:  f(xi) = fi,  i = 0, 1, ..., n.  

                (Note that a = x0  and b = xn). 

(c)  f′(x0) = f′ (a) and f′ (xn) = f′ (b) 

 

Outputs:  The coefficients a0, ..., an; b0, ..., bn; c0, c1, ..., cn, and d0, d1, 

..., dn  of the n polynomials S0(x), S1(x), ..., Sn−1(x) of which 

the cubic interpolant S(x) is composed. 

 

 

Step  1.  for i = 0, 1, ..., n −1 do 

               hj  ←  ( xj+1  −xj) 

 

Step  2.  For i = 0, 1, ..., n  do                      #Compute a0, a1, ..., an: 

              ai  ←  f(xi) 

 

Step  3.   Compute  the  coefficients  c0, c1, ..., cn   by  solving  the  system  

Ax  =  r,  where  A is square matrix, x is column marix of c, and r 

is right hand side column matrix   in equation (13). 

 

Step  4.  Compute the coefficients b0, ..., bn  and d0, d1, ..., dn  as given in 

the equations (14) and (15) above. 
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Exercises 

 

(1)   Consider the following table 

 

x 1 1.01 1.02 1.025 1.03 

f(x)  0 0.01 0.0198  ? 0.0296 

 

(a) Find an approximation of f(1.025) using   Lagrangian 

interpolating polynomial of degree 3 

   

 

(2)    Suppose  that  a  table  is  to  be  prepared  for  the  function  f(x)  =  

ln x  on  [1, 3.5]  with equal spacing nodes such that the interpolation 

with third degree polynomial will give an accuracy of  ε = 5x10
-8

.  

Determine how small h has to be to guarantee the above accuracy. 

 

(3)  (a)  Find an approximate value of log10(5) using Newton’s forward   

difference formula with x0  = 1,  x1  = 2.5,  x2  = 4,  and x3  = 5.5. 

      (b)  Repeat part (a) using Newton’s backward differences. 

      (c)  Compare the results.  

 


