The theory of Polarons



Polarons and the electron-phonon interaction

The conduction electrons are strongly influenced by the ionic motion, thus
leading to electron-phonon coupling. Some of the consequences of the
coupling of electrons & phonons are:

1. Scattering of electrons from one state to another (ie k to k" ) leading to
electrical resistivity.

2. Creation or absorption of phonons.
3. Giving rise to an attractive e-e interaction leading to superconductivity.

4. The electron drags along with it a part of the phonons (phonon cloud).
This composite particle of electron plus phonon cloud is called a polaron.

5. The polaron is an example of a quasi particle, and has a heavier effective
mass than an electron in a lattice.



band of interest is nondegenerate, spherical, and given by
k’
2m*’
* is the effective mass of the conduction electron.
us now make a small uniform static deformation described by

rain components e,,. The perturbed energy surface may be
ted in principle; it will be of the form

e(k) = eo(k) + Cpewr + Cllkven + « - -,

ing terms. In a semiconductor the k’s of interest are usually

snd we set C),, aside. For a spherical energy surface in the

wined crystal, it is not possible for g(k) to be an odd function
shear strain: we must therefore have C,, = 0 for u # v. Because
‘spin-orbit interaction we write for low &

E(k) o EO(k) + CIA)

te A is the dilation. Here €, = 9¢(0)/dA is a constant which may
etermined in part by pressure measurements.

go(k) =
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t is easily shown that for a free electron gas the constant C; has
| value —3&r, where €p is the fermi energy. The kinetic energy
' electron is, at the fermi surface,
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; e(kp) = eolkr) — Feo(kp)A.
3 ,"ia‘ result assumes that the charges move to keep each part of the



crystal electrically neutral—this is well satisfied for quasistatic pertus
bations of wavelength long in comparison with the sereening lengtl
as defined in Chapter 6.

For acoustic phonons of long wavelength we assume that (3) may he

generalized to read
(8) e(k,x) = go(k) + C1A(x),

with a similar generalization applying to (4). It is quite apparent
that optical phonons are not covered by such a treatment; for one
thing, the dilation is only related to acoustic phonons; for another, we
have not included long-range electrostatic potentials which would arise
from longitudinal optical phonon deformations.
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In the Born approximation we are concerned with the matrix ele-
ments of C;A(x) between the unperturbed one-electron Bloch states
k) and |k), with |[k) = e*®u(x), where u(x) has the periodicity of
the lattice (Chapter 9). Using, from (2.84), the expansion of the
dilation in phonon operators,
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(10) ¥(x) = }:, xoxl(x) = ?.: cxe™ Fuy(x),

and the a',", a, refer to longitudinal phonons of wavevector q. The
product up(x)uy(x) involves the periodic parts of the Bloch functions
and is itself periodic in the lattice; thus the integrals in (9) vanish
unless

(11) k—k'iq='0

vector in the reciprocal lattice.

For plane waves only the possibility zero exists, as here each uy(x)
is constant. In semiconductors at low temperatures the possibility
zero may be the only process allowed energetically. If

(12) k—k'+q=0,
the scattering process is said to be a normal or N process. If







"potential perturbation is
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r;‘”,(l‘*) H = iC, z (29‘%) quuaqctchk * a:Ck-qck);
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| ‘we may equally write this as

(15) H' = iC, z (2pwq) lq| (aq — aZ4)Ch-oCk-

, &
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The field operators describe the scattering processes shown in Fig. 1.

. Before going further we should see what the limitations are on the
strength of the coupling parameter C; in order that our gepnrntnon of
electron and phonon energies should make sense. The existence of the
‘electron-phonon coupling H’ (14) means that an electron in a state k
with no phonons excited cannot be an exact eigenstate of the s.ystem,
but there will always be a cloud of virtual phonons accompanymg.the

" electron. The composite particle, electron plus lattice deformation,
is called a polaron.* The phonon cloud changes the energy of the

* The term polaron is most often used for an electron plus the cloud of virtual
ontical nhonons in ionie ervstals.



electron. If the number of virtual phonons accompanying the electron
is of the order of unity or larger, we can no longer trust the result
of a first-order perturbation ecalculation. Nor can we then have
much confidence in the validity of crystal wavefunctions written as u
product of separate electronic and vibronic functions. This is not a
trivial question: for heavy particles such as protons moving in the
crystal the number of virtual phonons is very large (see Problem 1).
In these circumstances the proton may become trapped locally in the
crystal. |

Phonon Cloud. Let us caleulate by perturbation theory the number
of virtual acoustic phonons accompanying a slow electron. We take
as the unperturbed state of the phonon system the ground state in
which no phonons are excited; the unperturbed state of the electronic
system is taken as a Bloch state. Thus we write the unperturbed
state of the total system as |k0); the first-order perturbed state denoted

by |k0)¥ is given by

(16) |k0)® = [k0) + 2 lk — q;l,)



k — q;l | H'|kO
a6 k) = k) + 3 i — g1 § IR,
q k= Sk—q T Wy

where H' is the electron-phonon interaction. ‘The total number ol
phonons (N) accompanying the electron is given by taking the expecta-
tion value of Z aja, over the state |k0). On summing over the
squares of the admixture coefficients we have

— a-1.1H’ 2
(17) Ny =3 |(k — a1l H'[k0)|*

Q (ek =y “’q)2

For the deformation potential interaction (14),
C 12|Q|,
2pc,

where ¢, is the longitudinal velocity of sound. Now, with m* as the
effective mass of the conduction electron,

1
2m*

For a very slow electron we neglect k in comparison with ¢ and then
write the sum in (17) as an integral,

2mt2C12 q
(27)pc, (¢* + 2¢,m*q)?
where the integral should be carried over the first Brillouin zone of the

(18) [k — q;14| H'|k0)|* =

(19) €y — Ex—q — Wq = (2k- q — ¢*) — cg.

(20) (N) =

dsq .



Jongitudinal phonons,  We shall for convenience take the integral over
u sphere in q space out to a ¢gm chosen to enclose a number of modes
equal to the number of atoms:
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ere. with % restored, ¢. = 2m c./h =~ 10° em™! is essentially the
tron compton wavevector in the phonon field. The numerical
mate was made using m* = m and ¢, = 5 X 10° cm/sec. The
ntegral is standard:

o q ( qm qm
)'V,AV' = l l — — ———
2 ) L 9 (g + gc)® A s Qe gm + Qe

Because gm = 10° em™!, we have ¢gm/¢.> 1 and the value of the
ategral is approximately log (gm/gc). Now, with # restored,
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g C; ~5 X 107! ergs; m*~0.2 X 107%" gm; p~5, c,~5
’IO' em/sec; (gm/q.) ~ 10%, we have (N) ~0.02. In these con-
1it ns, which are perhaps typical for covalent semiconductors, the
expectation value of the number of virtual phonons around each
ele _tron is very much smaller than unity. If we do not neglect k in
_"inparison with ¢, we obtain the more complete result




(N) = —-l-,- e C. log (gm/qc)-

Taking C; ~5 X 107" ergs; m* ~0.2 X 107*" gm; p~5, ¢, ~5
._-10' em/sec; (qm/qc) ~ 10%, we have (N) ~ 0.02. In these con-
itions, which are perhaps typical for covalent semiconductors, the
expectation value of the number of virtual phonons around each
electron is very much smaller than unity. If we do not neglect k in
comparison with ¢, we obtain the more complete result

M'2012 { Qe — 2k
N (27)%pc.hk (0p.~ %) Jog gm + qc — 2k
Qm + g + 2k }.
+ (Qc + 2k) 108 2 + ok l

‘ ,Rda:mtwn Time. We see from the form of the wavefunction (kO)‘”
given by (16) that in the presence of the electron-phonon interaction
the wavevector k is not a constant of the motion for the electron alone,
but the sum of the wavevectors of the electron and virtual phonon is
conserved. Suppose an electron is initially in the state [k); how long
will it stay in the same state?

| ~ ‘We calculate first the probability w per unit time that the electron
in k will absorb a phonon q. If ng is the initial population of the
phonon state,

(25) w(k + qing — 1k;ny)
>z 2'kk + q;nq — lIH'ik nq)lzé(el + wqg — el+q)
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(26) (k + q;ng — 1H'|kng)|* = T

The probability per unit time that an electron in k will emit a phonon q
involves the matrix element through

012‘1
2pCy

The total collision rate W of an electron* in the state |k) against
a phonon system at absolute zero is, from (27) with ng, = 0,

Cit
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(27) |(k — q;ng + 1|H'|kjng)|* = (ng + 1).

1 gm
(28) W = / d(COS Oq) / dq q’é(&k £ it w,,).
~1 0

Now the argument of the delta function is

1 1

o'm* 2) = Cq = o'm* (2k & <l q2 Ina QQC))

(29)




(29 = .(2k q—¢) —cg =5~ (k- q— ¢ —qg),

where g, = 2m*c, as before. The minimum value of & for which the
argument can be zero is

(30) kmin . %’(q + 96)’
which for ¢ = 0 reduces to
(31) kngn = %q, = m‘c,.

For this value of k the electron group velocity v, = kni/m* is equal
to ¢,, the velocity of sound. Thus the threshold for the emission of
phonons by electrons in a crystal is that the electron group velocity
should exceed the acoustic velocity; this requirement resembles
the Cerenkov threshold for the emission of photons in crystals by

* There is a simple connection between the first-order renormalization of the
electron energy and the relaxation rate (28)., The renormalized energy is

K k — q;1q|H'|k;04)|*
- .+E (ke — qi1q|H']k;09)[*
m Eg—tg_q—uq—n

where the limit s — 40 is to be taken. By (1.34),
glel == ) |(k — qilg| H'|k;0)|%5(ex — €xmq = wo).
q

On comparison with (28),
W = 24l=z)



ELECTRON INTERACTION WITH LONGITUDINAL OPTICAL PHONONS

We expect electrons in ionic erystals to interact strongly with
longitudinal optical phonons through the electric field of the polariza-
tion wave. This is a long-range coulomb interaction and is different
from the deformation potential interaction. The interaction with
transverse optical phonons will be less strong because of their smaller
electric field, except at very low q where the electromagnetic coupling
may be strong. Neglecting dispersion, the hamiltonian of the longi-

tudinal optical phonons is approximately

(36) Ho = o ), biby
q



where b%, b are boson operators. That is, we have N modes of differ-
ent q, but with the identical frequency w;. Reference to (2.83) tells us
that the dielectric polarization field is proportional to the optical
phonon amplitude and will have the form

(37) P = P ), tg(bee'?™ + bieiv¥),
q

where ¢, is a unit vector in the direction of q and F is a constant to be
determined. We expand the electrostatic potential in the form

(38) o(X) = D, (p€'%* + oe™vE),
whence
(39) E=—grade = -z’;?q(qo,c"‘" ~igteTivy,

But div D = 0, so that E + 42P = 0, or
(40) ¢q = —14xFb,/q.



(40) ¢q = —14xFby/q.

We now want to evaluate the constant F in terms of the interaction
energy e®/er between two electrons in a medium of dielectric constant e.
Consider electrons at x; and x» which interact directly through the
vacuum coulomb field and indirectly through the second-order pertur-
bation of the optical phonon field. The desired form of the effective
perturbation hamiltonian in first order is obtained as the expectation
value of the potential energy operator ¢ [ d*z p(x)e(x) over the state
\I"*‘(x;)\li*'(xz)]vac) which represents electrons localized at x; and x,,
according to an extension of (5.124):

(41) H'(xy,x3) = ep(x;1) + ep(xa)
= —i4rFe Z q-l(b'e""‘t - b;”e—ii'!. + b ‘eiq-x,
‘ — bemiem),

Now at absolute zero the second-order energy perturbation caused by
(41) is

H"(x;,xz) -l E (OIGW(xl)quq'c@(xz)[(»’
Q

@i

(42)

where we have dropped products in x, alone or x; alone, as these are
self-energy terms. The factor 2 arises from the interchange of x; and
X2 in the expression for the perturbation. Here the state [0) denotes



the vacuum phonon state; and |q) denotes the state with one optical
phonon q excited virtually with energy w1t is supposed in using (42)
that the electrons are localized and that their state does not change
in the interaction process. This problem is almost identical with the
Interaction problem in neutral scalar meson theory, without recoil.

It is easy to evaluate H'' from (41) and (42):

282(41F) ’ E

Wy qq

ctt' (%, ~ x‘)

(‘8) H"(Xl,xz) o B

" but we have seen that when summed over all q

E 4 1
(44 — &' = —
(" ) q 9 lx'

#0 that in the ground state

8rF?  e?
(45 H"(x G | :
('('l ) (x1,X2) w ]x; e XZI




#0 that in the ground state

% 8rF* ¢
H'"(xy,xq) = — i lxl i le

This interaction is thus of the form of an attractive coulomb inter-
etion between the charges e at x; and x;: it gives exactly the ionic
contribution to the interaction, It thus accounts for the difference
between e’/er and e*/e,r, where the dielectric constant ¢ includes
electronic and ionic polarizabilities, and ¢, includes only the electronic
f'tnbutxon The ionic term lowers the energy of the system. We

ko ke Bl 2
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i n step (44) the sum was carried out over all g; actually the sum should
K ly be over q's in the first Brillouin zone. The part of q space we

| 7 ':stances within l/q,.., where ¢m is on the zone boundary
Polaron Cloud. We now solve in the weak coupling limit for the
a,;umber of optical phonons which clothe an electron. From (16)

(k — q;1H'|k;09)|*
(e — ex—q — w2)* '
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but now instead of the deformation potential (14) we have

(48) H' = ] Az o0 (x) (%) ¥(x) 3
= —idxFe z q l(qugﬂCg b Ct_.cn).

using (38) and (40) for ¢(x). Then
(49) [(k — q;1|H'|k;0.)|* = (4xeF)?/q?,
and, neglecting k + q in comparison with ¢°,

1
@+ o

where ¢,° = 2m*w;; we have taken the upper limit as « in the integra-
tion. For NaCl ¢, = 107 em™! if m* is taken as the electronic mass;
thus ¢, times the lattice constant is of the order of 3.

The value of the integral in (50) is x/4¢,°; with # restored

e’ 2m’w1)” ( 1 l) a
(51) (e 4ﬁun( fi & = €0 -
this defines «, the dimensionless coupling constant commonly employed
in polaron theory, after H. Fréhlich, H. Pelzer, and S. Zienau, Phil.
Mayg. 41, 221 (1950). With m* taken as the mass of the free electron,

typical values of « calculated from the observed dielectric properties
and infrared absorption of alkali halide crystals are:

(50) (Ny = 8e2F*(2m*)? f




LiF NaCl Nal KCl KI RbCI

5.25 5.5 4.8 5.0 6.1 6.4
(N) 2.62 2.8 2.4 2.9 3.1 3.2

Thus for the alkali halides our estimate leads to (N) > 1, so that the
perturbation theory cannot be trusted to give valid quantitative
results and more powerful methods are needed; we do, however, obtain
an impression of the actual situation.

Polaron Effective Mass. The self-energy of a polaron for weak
coupling is given in second-order perturbation theory as

(k — g;1g|H'[k;0) 0,_'_’

(52) = gf — 2m* l A

? q — 2k+q + Qp

or, using the interaction (48) appropriate to the ionic erystal problem,

1 -
1
(53) g — el = —&’F"‘m*/ d(cos 0) d '
$ T X3 0 qq"-Zk-q-l-qp’

Here we have used (49) and ¢,° = 2m*w,.



,. Tha integral can be evaluated exactly, but for slow electrons
( .4( qp) we might as well expand the integrand as

1 2’”‘: 4"2 2 2 )
1+90+ +’+a+ﬁv+

with z = g/qp; 4 = cos 8; n = k/gp. The integral over du leaves (54)

1-::: (2+*"'(1 +’ ’)"" )

'. €x — € (wz + 12 g ot o '),

Lthat the ground-state energy is depressed by aw; by the electron-
phonon interaction, and the total polaron kinetic energy is

' 1

Exin = 5;;‘-; (1 g ia)k’.

i BRI



