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Paper PT-204    UNIT - III 

Lagrange Interpolation 
 

1.  Statement  and applications 

 

Consider the following table: 

 

x x0 x1 x2 x3 …. xk …. xn 

f(x) f0 f1 f2 f3 … fk …. fn 

 

In the above table, fk, k = 0, ··  . , n are assumed to be the values of a certain 

function f(x), evaluated at xk, k = 0, ··· , n in containing these points.  Here 

it is important that only the functional values (fk) are known, not the 

function f(x) itself.  The problem is to find fu corresponding to a 

nontabulated intermediate value x = u. 

 

Such type of problems is known as Interpolation Problem.   The independent 

values of the function   x0,   x1, ··· , xn   are called the nodes. 

 

In short, we can state that Given (n + 1) points:  (x0, f0), (x1, f1), 

···(xn, fn), find fu corresponding to xu, where x0  < xu  < xn; assuming 

that f0, f1, ··· , fn  are the values of a certain function f(x) at x = x0, x1, 

··· , xn, respectively. 

 

The Interpolation problem is also a classical problem and dates back to the 

time of Newton and Kepler, who needed to  solve  such  a  problem  in  

analyzing  data  on  the  positions  of stars and planets.  It is also of interest 

in numerous other practical applications.  Here is an example. 

 

2    Existence and uniqueness 
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It  is  well-known  that a continuous  function  f(x) on  [a, b]  can  be  

approximated as  close  as possible  by  means  of  a  polynomial.   

Specifically,  for  each ɛ >  0,  there  exists  a  polynomial P (x)  such  that  

|f(x) − P (x)| < ɛ     for  all  x  in  [a, b].  

 

This  is  a  classical  result,  known  as Weierstrass Approximation  

Theorem. 

 

Knowing that fk, k = 0, ··· , n are the values of a certain function at xk, the 

most obvious thing then to do is to construct a polynomial Pn(x) of degree at 

most n that passes through the (n + 1) points:  (x0, f0),  (x1, f1),  ··· , (xn, 

fn). 

 

Indeed,  if  the  nodes  x0, x1, ..., xn     are  assumed  to  be  distinct,  then  

such  a  polynomial  always  does  exist  and is  unique,  as can be  seen from  

the following. 

 

Let  Pn(x)  =  a0  + a1x + a2x2  + ··· + anxn   be  a  polynomial  of  n
th

 

degree.  If  Pn(x) interpolates at x0, x1, ··· , xn, we must have, by definition 

 

Pn(x0) = a0  + a1x0  + a2x0
2  + ···+ anx0

n
    = f0   

     

Pn(x1) = a0  + a1x1  + a2x1
2  + ···+ anx1

n  = f1   

… 

…          (1) 

Pn(xn) = a0  + a1xn  + a2xn
2  + ···+ anxn

n  = fn  
 

 

These equations can be written in matrix form: 

 

 

 

 



=: 3 := 
 


































































fn

f

f

an

a

a

nxnxn

nxx

nxx

1

0

1

0

..1

....

1..11

0..01

                                                       (2) 

 

Because x0,  x1, ··· , xn  are distinct, it can be shown (with the help of data) 

that the matrix of the above equation (2)  is nonsingular.  Thus, the linear 

system for the unknowns a0,  a1, ··· , an  has a unique solution, in view of 

the following well-known result. 

 

The n × n algebraic linear system Ax = b has a unique solution for every 

b if and only if A is nonsingular.  

 

This means that Pn(x) exists and is unique. 

 

It can be summarize as follows: 

 

 

Given  (n + 1)  distinct  points  x0,   x1, ··· , xn   and  the  associated  values  

of a  function  f(x)  at  these  points  (i.e.,  f(xi)  =  fi,   i  =  0, 1, ··· , n),  there  

is  a  unique polynomial Pn(x) of at most n
th
 degree such that Pn(xi) = fi, i = 

0, 1, ··· , n.  The coefficients of this polynomial can be obtained by solving 

the (n + 1) ×(n + 1) linear system using either Gauss elimination method or 

Gauss Seidal Method. 

 

The polynomial Pn(x) is called the interpolating polynomial. 

 

 

 

3    The  Lagrange Interpolation 

 

Once  we  know  that  the  interpolating  polynomial  exists  and  is  unique,  

the  problem  then becomes how to construct an interpolating polynomial; 

that is, how to construct a polynomial Pn(x), such that 
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x 

 

Pn(xi) = fi,  i = 0, 1, ··· , n. 

 

It  is  natural  to  obtain  the  polynomial  by  solving  the  linear  system  

(equation (1))  in  the  previous section.  Unfortunately,  the  matrix  of  this  

linear  system,  known  as  the  Vandermonde Matrix, is usually highly ill-

conditioned, and the solution of such an ill-conditioned system,  even  by  

the  use  of  a  stable  method,  may  not  be  accurate.   There  are, however, 

several other ways to construct such a polynomial, that do not require 

solution of a Vandermonde system.  We describe one such in the following: 

 

Suppose  n  =  1,  that  is,  suppose  that  we  have  only  two  points  (x0, 

f0),  (x1, f1),  then  it  is easy to see that the linear polynomial 
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is an interpolating polynomial, because P1(x0) = f0,  P1(x1) = f1. 

 

For convenience, we shall write the polynomial P1(x) in the form 

P1(x) = L0(x)f0  + L1(x)f1, 

 

Where Lo(x) = 
10
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Note that both the polynomials L0(x) and L1(x) are polynomials of degree 1. 

 

The concept can be generalized easily for polynomials of higher degrees. 

To generate polynomials of higher degrees, let’s define the set of 

polynomials [Lk(x)] recursively, as follows: 

 

 

)(xLk
))....(1)(1....()1()0(

))...(1)(1........()1()0(

xnxkxkxkxkxkxxkxxk

xnxxkxxkxxxxx
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                     (3) 
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We will now show that the polynomial Pn(x) defined by 

 

Pn(x) = L0(x)f0  + L1(x)f1  + ···+ Ln(x)fn                                          (4) 

                                          

is an interpolating polynomial. To see this, note that 

 

L0(x0) = 1,  L0(x1) = L0(x2) = ··· = L0(xn) = 0 

L1(x1) = 1,  L1(x0) = L1(x2) = ··· = Ln(xn) = 0 

 

In general 

Lk(xk) = 1 and Lk(xi) = 0,  i ≠ k. 

 

Thus 

 

Pn(x0) = L0(x0)f0  + L1(x0)f1  + ···+ Ln(x0)fn  = f0 

Pn(x1) = L0(x1)f0  + L1(x1)f1  + ···+ Ln(x1)fn  = 0 + f1  + ···+0 = f1 

 

Pn(xn) = L0(xn)f0  + L1(xn)f1  + ···+ Ln(xn)fn  = 0 + 0 + ···+ 0 + fn  =fn 

 

e.i., the polynomial Pn(x) has the property that  

 

Pn(xk) = fk,  k = 0, 1, ··· , n. 

 

The polynomial Pn(x) defined by (4) is known as the Lagrange 

Interpolating Polynomial. 
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Example   Interpolate f(3) from the following set of data using Lagrange 

interpolation: 

X 0 1 2 4 

F(x) 7 13 21 43 

 

Using general formula 
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                 (x −1)(x −2)(x −4) 
L0(x) =    ---------------------------- 

                     (−1)(-2)(-4) 

 

                 (x −0)(x −2)(x −4) 

L1(x) =   ----------------------------- 

                     1.(-1)(-3) 

 

              (x −0)(x −1)(x −4) 

L2(x) =   ---------------------------- 

                    2 ·1 ·(-2) 

 

              (x −0)(x −1)(x −2) 

L3(x) =  ------------------------------ 

                     4 ·3 ·2 

 

Thus for x=3 

 

L0(3) = ¼;     L1(3) = -1;       L2(3) = 3/2;     L3(3) = ¼ 

 

So, P3(3) = L0(3)x7 + L1(3)x13 + L2(3)x21+L3(3)x43. 

                = (1/4)x7 + (-1)x13 + (3/2)x21 + (1/4)x 43 

                = 31 

 

Thus From given set of data the interpolated value of dependent variable 

corresponding to dependent variable x=3 is f(3) = 31. 


