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Abstract:    This chapter introduces the concept of gastrointestinal absorption simulation using 

in  silico methodology. Parameters used for model construction and the sensitivity 

predicted  pharmacokinetic responses to various input parameters are described. 

Virtual trials for in silico  modeling of drug absorption are presented. The influence 

of food on drug absorption, as well as  correlation between the in vitro and in vivo 

results, are also addressed, followed by biowaiver  considerations. Numerous 

examples are provided throughout the chapter.

1. Introduction

Biopharmaceutical assessment of drugs is of crucial importance in different phases of drug 

discovery  and development. In early phases, pharmaceutical profiling can help to 

find an appropriate ‘drug-  like’ molecule for preclinical and clinical development, 

and in later stages, extended  biopharmaceutical evaluation can be used to guide 

formulation strategy or to predict the effect of  food on drug absorption. A growing 

concern for biopharmaceutical characterization of  drugs/pharmaceutical products 

increased the interest in development and evaluation of in silico  tools capable of 

identifying critical factors (i.e. drug physicochemical properties, dosage form  

factors) influencing drug in vivo performance, and predicting drug absorption based 

on the selected  data set(s) of input factors.

Although an in silico pharmacokinetic (PK) model can confirm different drug administration routes 

 (Gonda and Gipps, 1990; Grass and Vee, 1993; Mahar Doan and Boje, 2000), the 

main focus has  been on prediction of pharmacokinetics of orally administered drugs 

(Yu et al., 1996; Grass, 1997;  Grass and Sinko, 2002; Norris et al., 2000; Agoram et 

al., 2001; Boobil et al., 2002). Drug absorption  from the gastrointestinal (GI) tract is 

a complex interplay between a large number of factors (i.e.  drug physicochemical 

properties, physiological factors, and formulation related factors), and its



correct representation in the in silico models has been a major challenge. Various  

qualitative/quantitative approaches have been proposed, starting from the pH-partition hypothesis  

(Shore et al., 1957), and later moving to the more complex models, such as the Compartmental  

Absorption and Transit (CAT) model (Yu and Amidon, 1999). Yu et al. gave a good review of these  

models, classifying them into quasi-equilibrium, steady-state, and dynamic models categories (Yu et  

al., 1996).

In recent years, substantial effort has been allocated to develop and promote dynamic models that  

represent GI tract physiology in view of drug transit, dissolution, and absorption. Among these are  

the Advanced Dissolution, Absorption and Metabolism (ADAM) model, the Grass model, the GI-  

Transit-Absorption (GITA) model, the CAT model, and the Advanced CAT (ACAT) model (Huang et al., 

 2009). Some of them have been integrated in commercial software packages, such as GastroPlus™,  

SimCYP, PK-Sim®, IDEA™ (no longer available), Cloe® PK, Cloe® HIA, and INTELLIPHARM® PKCR  

(Norris et al., 2000; www.Simulator.plus.com; www.Symcyp.com; Willmann et al., 2003;  

www.Cyprotex.com; www.Intellipharm.com PKCR. One of the first overviews of the available  

software intended for in silico prediction of absorption, distribution, metabolism, and excretion  

(ADME) properties was given in the report of Boobis et al. (2002). Cross-evaluation of the presented  

software packages was interpreted in terms of software purpose and function, scientific basis,  

nature of the software, required data to run the simulations, performance, predictive power, user  

friendliness, flexibility, and evolution possibilities.

Due to dynamic interpretation of the processes a drug undergoes in the GI tract, dynamic models 

are  able to predict both the fraction of dose absorbed and the rate of drug absorption, and can be  

related to PK models to evaluate plasma concentration-time profiles (Yu et al., 1996). Such models  

can be beneficial at different stages of formulation development. For example, taking into account  

all the relevant biopharmaceutical properties of the compound of interest, the potential advantage  

of various drug properties in terms of improving oral bioavailability can be in silico assessed, before  

proceeding to in vivo studies. Also, by providing more mechanistic interpretation of PK data, these  

models can be utilized to explore mechanistic hypotheses and to help define a formulation strategy.  

The effect of food on drug absorption or possible impact of intestinal transporters and intestinal  

metabolism can be explored, leading to a better understanding of the observed pharmacokinetics,  

and guiding subsequent formulation attempts to reduce these effects.

The decisive advantage of in silico simulation tools is that they require less investment in resources  

and time in comparison to in vivo studies. Also, they offer a potential to screen virtual compounds.  

As a consequence, the number of experiments, and concomitant costs and time required for  

compound selection and development, is considerably reduced. In addition, in silico methods can be  

applied to predict oral drug absorption when conventional PK analysis is limited, such as when  

intravenous data are lacking due to poor drug solubility and/or if the drug shows nonlinear kinetics.  

Many research articles have discussed and explored the predictive properties of such mechanism-  

based models, emphasizing both their advantages and possible drawbacks (Norris et al., 2000;  

Parrott and Lave, 2002, Yokoe et al., 2003; Tubic et al., 2006; Kovacevic et al., 2009; Parrott et al.,  

2009; Jones et al., 2011; Reddy et al., 2011; Zhang et al., 2011; Abuasal et al., 2012). Several reviews  

on this subject have been published (Agoram et al., 2009; Grass and Sinko, 2002; Kesisoglou and Wu, 

 2008; Kuentz, 2008; Huang et al., 2009).

In the following, selected studies concerning the employment of GI simulation technology (GIST), in  

particular GastroPlus™ simulation technology, will be reviewed. Basic principles of GIST will be  

presented, along with the possibilities and limitations of using this mechanistic approach to predict  

oral drug absorption, estimate the influence of drug and/or formulation properties on the resulting
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absorption profile, predict the effects of food, assess the relationship between the in vitro and in  

vivo data, and aid justification of biowaivers.

6.2 Theoretical background

Simulation software packages, such as GastroPlus™, are advanced technology computer programs  

designed to predict PK, and optionally, pharmacodynamic effects of drugs in humans and certain  

animals.

The underlying model in GastroPlus™ is the ACAT model (Agoram et al., 2001), an improved version  

of the original CAT model described by Yu and Amidon (1999). This semi-physiological absorption  

model is based on the concept of the Biopharmaceutics Classification System (BCS) (Amidon et al.,  

1995) and prior knowledge of GI physiology, and is modeled by a system of coupled linear and  

nonlinear rate equations used to simulate the effect of physiological conditions on drug absorption  

as it transits through successive GI compartments.

The ACAT model of the human GI tract (Figure 6.1) consists of nine compartments linked in series,  

each of them representing a different segment of the GI tract (stomach, duodenum, two jejunum  

compartments, three ileum compartments, caecum, and ascending colon). These compartments are 

 further subdivided to comprise the drug that is unreleased, undissolved, dissolved, and absorbed  

(entered into the enterocytes). Movement of the drug between each sub-compartment is described 

 by a series of differential equations. In general, the rate of change of dissolved drug concentration 

in  each GI compartment depends on ten processes:

Figure 6.1 ACAT model interpretation of in vivo drug behavior (according to SimulationPlus, Inc.  

GastroPlus™ version 8.0 manual)

I.transit of drug into the compartment;

II.transit of drug out of the compartment;

III.release of drug from the formulation into the compartment;  IV dissolution of drug particles;

V.precipitation of drug;

VI.lumenal degradation of drug;

VII.absorption of drug into the enterocytes;

VIII.exsorption of drug from the enterocytes back into the lumen;  IX absorption of drug into portal 

vein via paracellular pathway; and  X exsorption of drug from portal vein via paracellular pathway.

The time scale associated with each of these processes is set by an adequate rate constant. Transfer 

 rate constant (kt), associated with lumenal transit, is determined from the mean transit time within 

 each compartment. The dissolution rate constant (kd) for each compartment at each time step is  

calculated based on the relevant formulation parameters and the conditions (pH, drug  

concentration, % fluid, and bile salt concentration) in the compartment at that time. Absorption 

rate  constant (ka) depends on drug effective permeability multiplied by an absorption scale factor 

(ASF)  for each compartment. The ASF corrects for changes in permeability due to changes in 

physiological  conditions along the GI tract (e.g. surface area available for absorption, pH, 

expression of



transport/efflux proteins). Default ASF values are estimated on the basis of the so-called logD 

model,  which considers the influence of logD of the drug on the effective permeability. According to 

this  model, as the ionized fraction of a compound increases, the effective permeability decreases.

Besides passive absorption, including both transcellular and paracellular routes, the ACAT model 

also  accounts for influx and efflux transport processes, and presystemic metabolism in the gut wall.

Lumenal degradation rate constant (kdegrad) is interpolated from the degradation rate (or half-iife)

vs. pH, and the pH in the compartment. Finally, the rates of absorption and exsorption depend on  

the concentration gradients across the apical and basolateral enterocyte membranes. The total  

amount of absorbed drug is summed over the integrated amounts being absorbed/exsorbed from  

each absorption/transit compartment (Agoram et al., 2001; SimulationPlus, Inc. GastroPlus™, 2012).

Once the drug passes through the basolateral membrane of enterocytes, it reaches the portal vein  

and liver, where it can undergo first pass metabolism. From the liver, it goes into the systemic  

circulation from where the ACAT model is connected to either a conventional PK compartment  

model or a physiologically based PK (PBPK) disposition model. PBPK is an additional feature included 

 in more recent versions of GastroPlus™. This model describes drug distribution in major tissues,  

which can be treated as either perfusion limited or permeability limited. Each tissue is represented  

by a single compartment, whereas different compartments are linked together by blood circulation.  

By integrating the key input parameters regarding drug absorption, distribution, metabolism, and  

excretion (e.g. partition coefficients, metabolic rate constants, elimination rate constants,  

permeability coefficients, diffusion coefficients, protein binding constants), we can not only estimate 

 drug PK parameters and plasma and tissue concentration-time profiles, but also gain a more  

mechanistic insight into the properties of a compound. In addition, several authors reported an  

improved prediction accuracy of human pharmacokinetics using such an approach (Jones et al.,  

2006a, 2012; De Buck et al., 2007b). One of the major obstacles for the wider application of this  

model has been the vast number of input data required.

However, advances in the prediction of liver metabolism (Houston, 1994; Howgate et al., 2006),  

tissue distribution (Poulin et al., 2001; Poulin and Theil, 2002; Rodgers et al., 2005, 2006), and  

absorption (Agoram et al., 2001; Willmann et al., 2004) from in vitro and in silico data have made 

the  PBPK model more attractive, leading to an increase in its use (Jones et al., 2011; 2006a, 2012; 

De  Buck et al., 2007a; Theil et al., 2003; Lave et al., 2007).

GastroPlus™ ACAT modeling requires a number of input parameters, which should adequately  

reflect drug biopharmaceutical properties. Default physiology parameters under fasted and fed  

states (e.g. transit time, pH, volume, length, radii of the corresponding GI region) are population  

mean values obtained from published data. The other input parameters include drug  

physicochemical properties (i.e. solubility, permeability, logP, pKa, diffusion coefficient) and PK  

parameters (clearance (CL), volume of distribution (Yc), percentage of drug extracted in the oral  

cavity, gut or liver, etc.), along with certain formulation characteristics (e.g. particle size distribution  

and density, drug release profiles for controlled-release formulations). Given a known solubility at  

any single pH and drug pKa value(s), GastroPlus™ calculates regional solubility based on the fraction  

of drug ionized at each compartmental pH according to the Henderson-Hasselbalch relation. Recent  

versions of the software have the ability to account for the bile salts effect on in vivo drug solubility  

and dissolution (GastroPlus™, 2012). The program also includes a mean precipitation time, to model  

possible precipitation of poorly soluble weak bases when moving from stomach to the small  

intestine. Effective permeability value (Peff) refers to human jejunal permeability. However, in the  

absence of the measured value, an estimated value (derived from in silico prediction (ADMET  

Predictor), in vitro measurements (e.g. CaCo–2, PAMPA assay), or animal (rat, dog) studies) can be



used in the simulation. For this purpose, the program has provided a permeability converter that  

transforms the selected input value to human Peff, based on the correlation model generated on 

the  basis of a chosen training data set.

In general, modeling and simulation start from data collection, and continue with parameter  

optimization (if needed) and model validation. The generated drug-specific absorption model can  

further be utilized to understand how formulation parameters or drug physicochemical properties  

affect the drug PK profile, to provide the target in vivo dissolution profile for in vitro-in vivo  

correlation (IVIVC) and identification of biorelevant dissolution specification for the formulation of  

interest, to simulate the effect of different dosing regiments, to predict food effects on drug  

pharmacokinetics, or to perform stochastic simulations on a group of virtual subjects

(Figure 6.2).Figure 6.2 GI simulation: general modeling and simulation strategy

6.3 Model construction

Modeling and simulation start from data collection. Mechanistic absorption models require a  

number of input parameters, which can either be experimentally determined or in silico predicted.  

The common approach is to use literature reported values as initial inputs.

There is a number of examples in the literature describing the use of GastroPlus™ to predict the 

drug  PK profile after oral administration (Tubic et al., 2006; Wei and Löbenberg, 2006; De Buck et 

al.,  2007a; Aburub et al., 2008; Okumu et al., 2008, 2009; Tubic-Grozdanis et al., 2008; Wei et al., 

2008;  Kovacevic et al., 2009; Parrott et al., 2009; Grbic et al., 2011; Jones et al., 2011; Parojčić et al., 

2011;  Reddy et al., 2011; Zhang et al., 2011; Abuasal et al., 2012; Crison et al., 2012; Kocic et al., 

2012). The  reported studies involved different dosage forms, including solutions, suspensions, 

immediate and  controlled release (CR) formulations, and all four BCS classes of drugs. Depending on 

the objective of  the study, human or animal physiologies under fasted or fed conditions were 

selected for  simulations. The required input parameters were taken from the literature, in silico 

predicted, or  experimentally determined, highlighting diversity in the approaches to build a drug 

specific  absorption model. The feasibility of using either Single Simulation or Virtual Trial mode 

(enables  incorporation of inter-subject variability in the model) has also been explored.

A recently published study on GI simulation of nimesulide oral absorption is an interesting example  

on how selection of input data might influence model accuracy to predict a drug PK profile (Grbic et  

al., 2012). Drug specific absorption models were constructed by two independent analysts, using the 

 same set of in vivo data, but with different presumptions regarding the key factors that govern  

nimesulide absorption.

A summary of the input parameters concerning nimesulide physicochemical and PK data is given in  

Table 6.1.Table 6.1Summary of nimesulide input parameters employed for GI simulation

A literature values taken from Rainsford, 2005;  B literature values taken from Dellis et al., 2007;

C in silico predicted (ADMETPredictor™ module);

D optimized values;

E literature values taken from Jovanovic et al., 2005;  F experimental value (Grbic et al., 2009);



G default GastroPlus™ values;

H literature values taken from Bernareggi, 1998.

Model 1 was constructed, assuming that nimesulide might be a substrate for influx transporters in  

the intestine. Therefore, the ASFs were adjusted to best match the resultant profile to the in vivo  

observed data (Table 6.2). Experimentally determined intrinsic solubility was used as the input 

value,  and human jejunal permeability was in silico predicted. Drug particle radius was assumed to 

be 5  microns. All other parameters were fixed at default values that represent human fasted 

physiology.

The approach used to construct and validate Model 2 was based on the comparative study of two  

dosage forms of nimesulide (immediate-release (IR) suspension and IR tablet). The absorption model 

 was initially constructed for IR suspension, and was afterwards validated for IR tablet formulation.

The main premise in Model 2 was that nimesulide is well absorbed after oral administration mainly  

due to the pH-surfactant induced increase in solubility in the GI milieu. Therefore, the ASFs were

kept on default GastroPlus™ values (Table 6.2), and input solubility and permeability values were  

optimized to best match the in vivo data.

The simulation results were compared with actual clinical data (Jovanovic et al., 2005), in order to  

identify the model yielding the best estimation.

The simulation results (nimesulide plasma concentration-time profiles, absorption and dissolution  

profiles, and the predicted and in vivo observed PK parameters) obtained using the Model 1 and 2  

input data sets, are presented in Figure 6.3 and Table 6.3.

According to the obtained data, both Models 1 and 2 gave accurate predictions of nimesulide  

average plasma profile after oral administration. In both cases, the percentage prediction errors for  

Cmax and area under the curve (AUC) values were less than 10%, indicating that the models have  

predicted these parameters well. The largest deviation was observed for tmax (PE of 21.25a/a and  

15% in Model 1 and Model 2, respectively). Nevertheless, the predicted values of 3.15 h (Model 1)  

and 3.4 h (Model 2) were considered as reasonable estimates, since the reported tmax values after  

oral administration of nimesulide IR tablets varied between 1 and 4 h (Jovanovic et al., 2005;  

Rainsford, 2006).

However, according to Model 1, the resultant ASF values in the duodenum and jejunum were much  

higher than the default GastroPlus™ values, reflecting fast absorption of NIM in the proximal parts 

of  the intestine. There were two distinct interpretations: Model 1 outcomes indicated involvement 

of  influx transporters in nimesulide absorption, while according to the Model 2 outcomes, the pH-  

surfactant induced increase in drug solubility was a predominant factor leading to relatively rapid  

absorption in the proximal intestine. It should be noted that the Model 2 assumption was supported 

 by the concept of Biopharmaceutics Drug Disposition Classification System (BDCCS), according to  

which BCS class II drugs are not expected to be substrates for influx transporters (Wu and Benet,  

2005). In addition, parameters for which accurate data were not available (i.e. in vivo solubility and  

human jejunal permeability) were optimized in Model 2. Also, Model 2 was developed using the set  

of in vivo data for two dosage forms (oral suspension and IR tablet), and revealed incomplete drug  

absorption from the IR tablet (~ 70% of the administered dose, as compared to almost 100% drug  

absorbed estimated for the same set of in vivo data when Model 1 was applied). This finding  

indicated that nimesulide dissolution from IR tablets is expected to be the limiting factor for drug  

absorption.



Overall, the described independent procedures to build a nimesulide specific absorption model  

illustrated the importance of understanding complex interplay between drug physicochemical and  

PK properties, formulation factors, and human physiology characteristics, in order to predict drug PK 

 profile in vivo. Interpretation of the obtained data indicated that the approach applied in Model 2  

might be considered as more realistic, signifying that the related absorption model more likely  

reflects nimesulide in vivo absorption. It was also stressed that, in order to obtain meaningful in  

silico modeling, the necessary input data have to be carefully selected and/or experimentally  

verified.

In the next example, gliclazide (GLK) was used as the model drug to illustrate general steps of

mechanistic modeling and simulation using GastroPlus™ to predict oral drug absorption. GLK is an  

ampholyte with pH-dependent solubility in the GI pH range (Grbic et al., 2011). According to the 

BCS,  GLK meets the criteria of a low solubility drug. Reports from the in vivo studies show that, after 

oral

administration, GLK is almost completely absorbed (Delrat et al., 2002; Najib et al., 2002), although  

its absorption rate appears to be slow and variable (Kobayashi et al., 1981; Hong et al., 1998; Davis

et al., 2000). A summary of the input parameters employed for GI simulation is given in Table 6.4.

In the initial attempt to construct a GLK-specific absorption model, Opt logD Model SA/V 6.1,  

considering default values for the absorption gradient coefficients C1–C4 (used to calculate the  

ASFs), was used to estimate changes in permeability as the drug travels along the GI tract. The  

resultant GLK absorption profile, based on the selected input parameters (Table 6.4) and default C1– 

 C4 values, diverged from the mean in vivo observed Cp-time data (Najib et al., 2002) (Figure 6.4).

Therefore, the absorption gradient coefficients, and consequently, the ASF values, were adjusted  

(using the Optimization module) to best match the resultant model to the in vivo data. Default and  

adjusted ASF values are given in Table 6.5.

The resultant ASF values in the small intestine, adjusted to best fit the observed plasma  

concentration-time data for GLK IR tablets, were lower than GastroPlus™ generated values,  

indicating the possible influence of efflux transporters on GLK absorption through this part of the  

intestine. This assumption was supported by the results of Al-Salami and associates, who revealed  

that GLK is a substrate of the ileal efflux drug transporters Mrp2 and Mrp3 (Al-Salami et al., 2008,  

2009). The generated plasma concentration-time profile, based on the selected input parameters  

along with the adjusted ASF values, is presented in Figure 6.4

The predicted fraction of drug absorbed (Fa) was 99.94%, which is in accordance with the literature  

reporting almost 100% bioavailability of GLK after oral administration (Delrat et al., 2002; Najib et  

al., 2002). The predicted and in vivo observed PK parameters rendered percentage prediction errors  

of less than 10% for Cmax and AUC values, indicating that the model has predicted these parameters 

 well. The largest deviation was observed for tmax (PE = 18.22%). However, considering variable GLK 

 in vivo kinetics (reported mean tmax values after oral administration of IR tablets varied between

2.3 and 4.5 h (Kobayashi et al., 1981; Glowka et al., 1998; Najib et al., 2002)), the simulated value of

3.68 h was considered a reasonable estimate.

GastroPlus™ generated regional absorption distribution demonstrated that the majority of GLK,  

formulated in IR dosage form, is absorbed in the duodenum and jejunum (69.9%), while the rest of  

the dose is absorbed in the mid-and distal GI regions (Figure 6.5).Figure 6.5 Compartmental  

absorption of GLKSeveral other examples from the literature summarize values of the input  

parameters employed to design GI absorption models for the selected drugs. One of the most

detailed descriptions of modeling and simulation strategy using GastroPlus™ was given by Zhang et  

al. (2011), who used carbamazepine (CBZ), a BCS class II compound, as an example to illustrate the



general steps of applying mechanistic modeling and simulation to identify important factors in  

formulation design and discuss important aspects of modeling and simulation. Four oral dosage  

forms of CBZ, namely IR suspension, IR tablet, extended-release (XR) tablet, and XR capsule, under  

both fasted and fed state were modeled. The required input parameters were collected from the  

literature, New Drug Applications (NDAs), Abbreviated NDAs (ANDAs), or in silico predicted, except  

the particle density for the IR tablet, which was a GastroPlus™ optimized value. A summary of the  

CBZ input parameters employed for ACAT model simulation is presented in

Table 6.6.Table 6.6Summary of the CBZ input parameters employed for ACAT model simulation 

(data  from Zhang et al., 2011)

The PK parameters and ASFs were obtained by two methods. The first method included  

deconvolution of the PK data for IR suspension under fasted conditions, to obtain systemic CL, Vc,  

distribution constants between central and peripheral compartments (K12, K21), and absorption  

rate constant (Ka), and tlag. These values were then fixed and the ASF values were optimized to  

obtain the physiology model. The optimized ASFs were about 10 times higher than the default Opt  

logD Model values, indicating rapid absorption of CBZ in the small intestine. The other approach  

considered fitting nine parameters in the ACAT model (Vc, CL, K12, K21, Ka, mean particle radius,  

drug particle density, solubility, and C1 and C2 constants used in calculation of ASFs), using the  

Optimization module. Coefficients C3 and C4, used to calculate the ASFs of the colon, were kept as  

default values. The optimized PK values revealed no significant differences in comparison to the PK  

parameters obtained by the first method; therefore PK parameter values obtained by fitting the  

conventional PK model were used for further simulations. Stomach transit times of 0.1 and 0.25 h  

were used for the IR suspension, and tablet and capsule under the fasted state, respectively, while a  

stomach transit time of 1 h was used for all dosage forms under fed conditions. A colon transit time  

of 36 h was used for all dosage forms under both fasted and fed conditions. All other parameters

were GastroPlus™ default values. In the case of XR products, Weibull controlled-release functions  

were used as inputs for GI simulation (Weibull parameters were obtained by deconvoluting mean PK 

 profiles after p.o. administration of XR tablets and capsules under fasted and fed conditions).

Predicted CBZ PK profiles were close to the observed mean PK profiles for all tested CBZ products  

under both fasted and fed conditions, as indicated by correlation coefficients, which ranged  

between 0.876 and 0.991. The model was also able to capture the absorption plateau that exists  

after oral administration of the investigated CBZ IR tablet under fasted conditions (the observed  

peak occupancy time (POT20, time span over which the concentration was within 20% of Cmax)  

ranged from 3.7 to 41 h under fasted conditions, while the predicted POT20 ranged from 2.9 to  40 

h).

Regional absorption distribution revealed that CBZ was mainly absorbed in the small intestine for IR  

formulation, but in caecum and colon for XR formulation, under both fasted and fed conditions,  

indicating formulation may have significant impact on CBZ regional absorption (Figure 6.6).

Comparing the percentage of drug absorbed in different GI regions under fasted and fed conditions  

revealed that food had the greatest effects on the rate of absorption from the IR suspension and  

tablet, and increased CBZ absorption in duodenum.

Another study of CBZ oral absorption simulation using GastroPlus™ was conducted by our group  

(Kovacevic et al. (2009). The prime objective of this study was to use GIST, in conjunction with IVIVC, 

 to investigate a possible extension of biowaiver criteria to CBZ IR tablets. In this context, GIST was  

used to predict the fraction of CBZ dose absorbed under fasted state, and the drug disposition based 

 on its physicochemical and PK parameters. Table 6.7 shows that some of the input parameters  

selected for simulation differed from the values used by Zhang et al. (2011). For example, drug



particle radius was three times larger in the study of Zhang et al. (2011), which inevitably led to  

slower in vivo dissolution, and consequently, drug absorption. Another notable difference referred  

to PK parameters employed for the simulations. Opposite to Zhang et al. (2011), who used a two-  

compartment model to describe CBZ pharmacokinetics following administration of an IR  

formulation, in our study, a one-compartment model was employed, and the corresponding PK  

parameters were used as inputs. Consequently, the generated absorption models differed, and the  

simulated PK profiles diverged, as illustrated by the predicted plasma PK parameters (Table 6.8).

However, in both studies, it was concluded that the model predicted well the average in vivo  

observed PK profile used as a reference. These conclusions come from the fact that different in vivo  

observed plasma profiles were used for model validation. The in vivo bioequivalence (BE) data used  

in our study indicated fast CBZ absorption (mean tmax = 7 h) in comparison to the in vivo profile  

rendered by Zhang et al. (2011) (characterized by a plateau absorption phase, with a mean tmax of  

16 h). Although seemingly diverse, the results of both studies could be considered as reasonable  

estimates. Namely, considering CBZ variable pharmacokinetics after oral administration (reported  

tmax ranged between 2 and 24 h (Bauer et al., 2008)), it could be concluded that the PK parameters  

predicted with both models were within the acceptable range.

The presented examples illustrate that the form of the generated absorption model highly depends  

upon the PK profile used as a reference. This emphasizes the importance of considering the widest  

possible range of literature reported and/or experimental values of drug PK parameters, in order to  

fully perceive model predictability.

6.4 Parameter sensitivity analysis

The generated drug-ipecific absorption model can be used to further explore within the model, such  

as understanding how the formulation parameters and/or drug physicochemical properties affect  

the predicted PK profiles. This kind of evaluation is performed by the Parameter Sensitivity Analysis  

(PSA) feature in GastroPlus™. When performing PSA, one parameter is changed gradually within a  

predetermined range, which should be based on prior knowledge, while keeping all other  

parameters at baseline levels. Another option is to use three-dimensional PSA when two parameters 

 are varied at a time, so the combined effect of these parameters is assessed. In addition, an  

optimized design space can be constructed as a function of the selected parameters. PSA can serve  

as a useful tool when the input values for some of the physicochemical properties of a compound  

are rough estimates (e.g. from in silico predictions), and when model predictions do not correlate  

well with in vivo values. In these cases, the analyst can perform PSA to define more biorelevant 

input  value(s), and in extension, to use them to generate a drug-specific absorption model. Another 

useful  application of this feature concerns highly variable drugs, where PSA can predict the effect of 

inter-  individual variation in PK parameters on drug absorption. PSA can also be used to guide 

formulation  design. For example, if a compound has a poor predicted percentage of drug absorbed, 

PSA can aid  identification of critical parameters limiting the absorption or bioavailability of a drug. 

Once the  limiting factors are known, it may be possible to devise methods to overcome these 

limitations (e.g.  reduction of drug particle size, addition of solubilizers, co-solvents, permeability 

enhancers, use of  different salt forms). In this way, researchers can save a great deal of time and 

effort, and minimize  loss of resources in (pre)formulation processes.

In the previously described case of GLK, PSA was performed to assess the effect of the selected  

formulation parameters (i.e. effective particle radius, drug particle density), and certain drug  

physicochemical properties (i.e. solubility and permeability) on the predicted rate and extent of GLK  

absorption. The selected parameters were varied in the range covering one-tenth to ten-fold actual



input parameter value, except for the human effective permeability, which was varied from one-half 

 to two-fold input value. The results are presented in Figure 6.7.

According to the PSA outcomes, the percentage of GLK absorbed (Fa) would not be significantly  

influenced by variations in drug particle density and effective particle radius. The PSA for solubility  

showed that even a 10-fold decrease in solubility would not cause bioavailability problems (Fa

> 85%) (Figure 6.7a). However, it was demonstrated that larger particles, higher density and/or  

lower solubility values than the ones used for simulation would decrease the rate of GLK absorption  

(Figure 6.7c). The results also indicated that variations in the input effective permeability did not  

significantly affect the drug absorption profile.

Other examples describe the use of PSA to investigate the effects of different input parameters on  

GastroPlus™ predicted drug PK performance. In our CBZ study (Kovacevic et al., 2009), PSA was used 

 to assess the importance of the selected input parameters (i.e. drug solubility, dose, effective

particle radius, and drug particle density) in predicting the percentage of CBZ absorbed. The selected 

 parameters were varied in the range from one-tenth to ten-fold actual input parameter value.

According to the results, the extent of drug absorption was rather insensitive to the variation in the

input parameters tested. PSA for drug solubility indicated that complete absorption (Fa > 85%) could 

 be achieved with CBZ solubility 2.5 times lower than the initially used input value (0.05 mg/mL in  

comparison to 0.12 mg/mL), signifying that eventual CBZ transformation to less soluble polymorph  

would not cause bioavailability problems. PSA for particle radius revealed that high bioavailability  

would be achieved with CBZ particle sizes up to 90 μm (25 μm was used as the input value), and PSA 

 for drug dose indicated that single doses up to 1200 mg would not impair the extent of CBZ  

absorption (Figure 6.8).

In another case where CBZ was used as the model drug (Zhang et al., 2011), PSA was performed for  

parameters for which accurate data were not available and the selected formulation parameters,  

including mean particle radius, particle radius standard deviation, drug particle density, diffusion  

coefficient, dose volume, drug permeability, drug solubility, precipitation time, and four Weibull  

parameters were used to describe release profile of the XR formulations. Four dosage forms of CBZ  

(IR suspension, IR tablet, XR tablet, and XR capsule), under both fasted and fed conditions, were  

studied. PSA results for solubility indicated that drug in vivo solubility had a significant impact on PK  

profiles when it was less than 0.2 mg/mL under the fasted state. However, since this border value  

was within the reported range of aqueous solubility of CBZ, the authors speculated that CBZ  

absorption is dissolution rate-limited rather than solubility-limited. This assumption coincides well  

with our findings (Kovacevic et al., 2009) that CBZ in vivo solubility would not cause bioavailability  

problems. PSA also denoted that permeability had less effect on the predicted PK parameters 

(Cmax,  tmax, AUC0-t) when CBZ was formulated as a suspension. As for the formulation factors, it 

was  shown that drug particle size and density had a significant effect on CBZ PK from IR 

formulations,  being more pronounced in the case of IR tablet in comparison to the IR suspension, 

but having no  effect on drug PK from XR formulations. However, the authors elucidated that this 

occurred because  in XR formulations the particle size effect was integrated in the dissolution 

profiles, which were  translated into Weibull functions for input into the ACAT model. Another 

phenomenon observed  was that CBZ absorption profiles showed different sensitivity to the same 

factors, depending on  whether the PSA was performed for fasted state or fed state. In general, it 

was shown that CBZ  absorption profiles were more sensitive to variations in input parameters 

tested in fasted state than  in fed state.

The work of Kuentz et al. (2006) is a good example of how PSA can be used as an integral part of a  

strategy for preclinical formulation development. In order to obtain detailed biopharmaceutical data



on the selected model drug, initially profiled to have poor solubility and high permeability,

GastroPlus™ simulations, together with the statistically designed study in dogs, were conducted. In  

the first step, the software was used to simulate the absorption process based on pre-formulation  

data. Then PSA was performed where drug particle size and solubility values were varied (>100-fold  

range) and their impact on the oral drug bioavailability was assessed. PK experiments in beagle dogs  

were run according to the factorial design set-up to examine the effect of the formulation in parallel  

with a potential food effect in a clinically foreseen dose range. The obtained PSA results revealed  

that changes in particle size and reference solubility in the investigated range would not significantly 

 affect drug bioavailability (Figure 6.9), and the beagle dogs study indicated that different dosage  

forms (solution and capsules filled with micronized drug) were not expected to be significantly  

different in terms of AUC0-inf. Based on the findings that particle size reduction and/or solubility  

enhancement would not lead to increased absorption, it was decided that there was no need to  

develop a sophisticated drug delivery system; instead, capsule formulation was selected for phase I  

clinical studies, leading to considerable resources being saved.

Dannenfelser et al. (2004) reported a case where PSA analysis revealed that drug solubility and  

particle size clearly influenced oral absorption of a poorly soluble drug. Additional PK studies in dogs  

revealed that solid dispersion containing water soluble polymer with a surface active agent showed  

comparable bioavailability with the cosolvent-surfactant solution (considered to be 100%  

bioavailable), both of which showed 10-fold higher bioavailability than the dry blend of micronized  

drug with microcrystalline cellulose. Thus, a capsule containing solid dispersion formulation was  

selected for clinical development.

6.5 Virtual trial

In the later stages of formulation development, it is especially valuable to anticipate inter-subject  

variability that may influence oral drug bioavailability. In this way, the formulator might gain a better 

 insight on what can be achieved by means of the formulation.

In order to in silico simulate the influence of population variability and/or the combined effect of  

formulation variables that are not precise values, but for which distributions of values can be

estimated, the Virtual Trial feature in GastroPlus™ can be used. This feature allows the user to  

perform stochastic simulations on a number of virtual subjects, wherein the values of the selected  

variables are randomly sampled from predetermined distributions (defined as means with  

coefficients of variation (CV%) in absolute or log space). CV% values are usually estimated on the  

basis of previous knowledge or analysis of literature data. The results of the simulations are  

expressed as means and coefficients of variation for fraction of drug absorbed, bioavailability, tmax,  

Cmax, and AUC values, as well as absolute minimum and maximum values for each of these  

parameters reached during the trials. Also, the average Cp-time curve, 90% confidence intervals,  

probability contours (10, 25, 50, 75, 90, 95, and 100%), and experimental data with possible BE 

limits  (if available), are displayed.

An illustration of the use of virtual trials for in silico modeling of oral drug absorption can be seen in  

the paper of Tubic et al. (2006). Although the prime objective of this study was to demonstrate how  

an in silico approach can be used to predict nonlinear dose-dependent absorption properties of  

talinolol, this section will focus solely on the results of virtual trial simulations. The reason why the  

authors performed simulations in a virtual trial mode was to include the effects of physiological  

variables, such as transit times in various GI compartments, GI pH, lengths and radii, PK parameters,  

plasma protein binding, and renal CL on talinolol absorption. Stochastic variables were randomly  

selected within the range defined by the means with predetermined coefficients of variation in log



normal space, and used for the simulation. Virtual trials were performed with 12 subjects (equal to  

the number of subjects used in the clinical study), and the results were presented as mean Cp vs.  

time profile with 90% confidence intervals around the mean, along with Cp vs. time curves for 25,  

75, and 100% probability of simulated patient data. The simulation results revealed that all of the  

observed clinical data lay within the minimal and maximal individual patient simulations, suggesting  

that the CV% values used for the log normal distributions of the stochastic variables produced  

variability that encompasses the observed clinical results. Thus, it was deduced that virtual trial  

simulations based on the presumed distribution of the selected variables were able to predict  

variability associated with the observed clinical data.

The Virtual Trial mode can also be used to conduct virtual BE studies, as demonstrated in the work 

of  Tsume and Amidon (2010) (Section 6.8: Biowaiver Considerations) and Zhang et al. (2011). In the  

latter example, virtual BE studies on 25 subjects were performed for a hypothetical XR CBZ tablet  

under fasted and fed conditions, using a conventional 2 × 2 crossover design. Stochastic variables  

included physiological and PK parameters, which were randomly sampled from the predefined range 

 in log-normal scale. Along with the reference product, two virtual test formulations were examined: 

 Test 1 having similar dissolution profile to the reference formulation (f2 = 67.4), and Test 2 that  

differed in in vitro dissolution compared to the reference product (f2 = 38.2) (Figure 6.10a). Drug PK  

profiles were predicted from the corresponding in vitro dissolution profiles described by the Weibull 

 function. A random sequence was assigned to the test formulations for 90% confidence intervals 

(CI)  calculation of Cmax, AUC0-t, and AUC0-inf. The simulation results showed that, in spite of the  

difference in in vitro dissolution, Test 2 was bioequivalent to the reference formulation using the 80  

to 125% criteria (Figures 6.10b,c), indicating that the in vitro dissolution test was more sensitive to  

formulation differences than an in vivo study. Also, it was perceived that the confidence intervals  

calculated for the test/reference ratios from virtual BE studies were narrower than the observed  

ones. This was attributed to the fact that physiological and PK parameters of the same subjects were 

 equal when the subjects were administered with the test vs. reference formulations. Therefore, the  

authors speculated that the Test 2 formulation might not be bioequivalent to the reference  

formulation if intra-subject variability was included in the simulations.

6.6 Fed vs. fasted state

The presence of food may affect drug absorption via a variety of mechanisms; by impacting GI tract  

physiology (e.g. food-induced changes in gastric emptying time, gastric pH, intestinal fluid  

composition, hepatic blood flow), drug solubility and dissolution, and drug permeation (Welling,  

1996). For example, lipophilic drugs often show increased systemic exposure with food, and this  

phenomenon is attributable to improved solubilization due to higher bile salt and lipid  

concentrations. Negative food effects are mostly seen for hydrophilic drugs, where food impedes  

permeation (Gu et al., 2007). One of the frequently used approaches to assess the effect of food on  

oral drug absorption involves animal studies (Humberstone et al., 1996; Paulson et al., 2001; Wu et  

al., 2004; Xu et al., 2012). However, due to the fact that physiological factors are species dependent, 

 the magnitude of food effect for a given compound across species is usually different, thus  

complicating the prediction of food effects in humans (Jones et al., 2006b). One alternative to 

animal  experiments is to simulate food effects in humans using physiologically based absorption 

models.

Considering that these models are built based on a prior knowledge of GI physiology in the fasted  

and fed states, they are able to describe the kinetics of drug transit, dissolution, and absorption on  

the basis of drug-specific features such as permeability, biorelevant solubility, ionization constant(s), 

 dose, metabolism and distribution data, etc. GastroPlus™ default physiology parameters, which  

differ between fasted and fed states, are given in



Several studies have confirmed the usefulness of the in silico modeling approach to assess food  

effects on oral drug absorption. For example, Jones et al. (2006b) incorporated biorelevant solubility 

 and degradation data into the GastroPlus™ absorption model to predict plasma profiles in fed,  

fasted, and/or high-fat conditions for six model compounds. Biorelevant solubilities were measured  

in different media: simulated human gastric fluid for the fasted and fed state, simulated human  

intestinal fluid for the fasted, fed, and high-fat state, and simulated human colonic fluid for the  

upper and the lower colon. The effect of food was simulated by changing physiological parameters  

and inserting the relevant solubility data into the appropriate ACAT compartments (stomach,  

intestine, and colon). The food effect for each drug was estimated by comparing AUC or Cmax  

between fasted, fed, and/or high-fat conditions. Predicted and observed plasma concentration-time 

 profiles and food effects were compared for a range of doses to assess the accuracy of the

simulations. The obtained results demonstrated that GI simulation using GastroPlus™ was able to  

correctly predict the observed plasma exposure in fasted, fed, and high-fat conditions for all six

compounds. Also, the applied method was able to accurately distinguish between minor and

significant food effects. Therefore, it was concluded that biorelevant solubility tests, in conjunction  

with physiologically based absorption modeling, can be used to predict food effects caused by  

solubility and dissolution rate limitations, and/or degradation. However, it was stressed that the  

accuracy of a generated drug-specific absorption model needs to be carefully verified before  

proceeding to predict the effect of food.

An important issue emphasized from different studies (Mueller et al., 1994; Schug et al., 2002a,b;  

Zhang et al., 2011) is related to the formulation-dependent food effects. Zhang et al. (2011)  

incorporated gastric emptying time and different drug in vivo solubilities under fasted and fed states 

 into the generated CBZ absorption model and observed that co-administration of CBZ IR suspension 

 with food resulted in decreased Cmax and prolonged tmax, probably due to a prolonged gastric  

emptying time, while co-administration of the IR tablet and XR capsule with food resulted in  

increased Cmax and earlier tmax in comparison with the PK parameters obtained under fasted 

state.  A possible explanation of this phenomenon was that the presence of a high-fat meal induced 

the  increase in bile salts concentration in the GI tract, thus enhancing the dissolution rate of low 

soluble  CBZ from the IR tablet and XR capsule.

Jones et al. developed a novel strategy for predicting human pharmacokinetics in fasted and fed  

states, by using PBPK absorption modeling across different species (Jones et al., 2006a). The  

proposed strategy implies that the absorption models are first generated for the selected preclinical 

 species (e.g. mouse, rat, dog, monkey) on the basis of data generated during drug research and  

preclinical development, and afterwards verified thoroughly by comparing the simulation outcomes  

with the results of in vivo animal studies. If the prediction was proven to be accurate, then the same 

 in vitro absorption parameters and the same assumptions can be used to predict human  

pharmacokinetics. However, if the animal model was incomplete, further refinement of the model is 

 needed in order to provide more accurate simulations in humans (Figure 6.11).

The overall concept of this strategy is illustrated in several papers published by this group (Jones et  

al., 2006b; Parrott and Lave, 2008; Parrott et al., 2009). For example, in one of these (Parrott et al.,  

2009), GastroPlus™ PBPK absorption models for dog and human for two model drugs (theophylline  

and aprepitant) were constructed in parallel by integrating various predictive data, including drug  

physicochemical properties, biorelevant solubility and dissolution, and in vivo study results.

Verification of model assumptions was performed by comparing simulation results to the food  

effects measured in carefully designed in vivo dog studies, whereas a good match of simulated and  

observed plasma concentrations in the fasted and fed dogs indicated that the model has captured



well the mechanisms responsible for food effects, allowing a reliable prediction for humans. The  

results indicated that the strategy to predict food effects via PBPK modeling highly depended on  

drug biopharmaceutical properties. For theophylline, a BCS class I compound, the food effects for  

immediate and CR formulations could be well simulated by default GastroPlus™ models for both dog 

 and human. However, simulations for aprepitant, a BCS II drug, required several changes to the

default GastroPlus™ models (e.g. adjustment of regional solubility data, modification of the diffusion 

 coefficient used to calculate the dissolution rate), indicating that PBPK modeling based on in vitro  

data for challenging drugs should be conducted in conjunction with preclinical in vivo dog studies.

6.7 In vitro dissolution and in vitro-in vivo correlation

There are two approaches enabling the GastroPlus™ generated drug-specific absorption model to be 

 used to assess the relationship between the in vitro and in vivo data: convolution to predict the  

plasma concentration profile, and deconvolution to estimate the in vivo dissolution profile. Once an  

IVIVC is developed, an in vitro dissolution test can be used to identify changes that may affect the  

efficacy and safety of the drug product. In addition, biowaiver justification could be discussed in  

terms of whether dissolution from the dosage form is expected to be the rate-limiting factor for 

drug  in vivo absorption.

In the convolution approach, a set of in vitro data representing different dissolution scenarios is 

used  as the input function in GastroPlus™ software to estimate the expected drug plasma 

concentration-  time profiles. In the next step, the obtained profiles are compared with the mean 

drug plasma  concentration profile observed in vivo, in order to establish an IVIVC. In the 

deconvolution approach,  the GastroPlus™ generated in vivo dissolution profile is plotted against the 

in vitro obtained

dissolution profiles, so that ‘bioperformance’ dissolution condition(s) can be identified.

In the previously described case study of GLK IR tablets (Grbic et al., 2011), a set of virtual in vitro  

data, based on the experimentally obtained results (in media pH 1.2, 4.0, 4.5, 6.8, 7.2, and 7.4) and  

literature reported data (Hong et al., 1998), was used as the input function in GastroPlus™ software  

to estimate the expected GLK plasma concentration profiles. The investigated in vitro profiles  

(presented in Figure 6.12a) were generated to reflect the situation where:

Figure 6.12 (a) Virtual GLK dissolution profiles, and (b) the corresponding simulated in vivo profiles,  

along with the actual in vivo data (from Najib et al., 2002) (the simulated profiles b, c, and d overlap)

I less than 85% of the drug is dissolved – incomplete dissolution (profile a);  II more than 85% of the 

drug is dissolved in 60 min (profile b);

III.more than 85% of the drug dissolved in 45 min (profile c);

IV.more than 85% of the drug dissolved in 30 min – ‘rapid’ dissolution criteria (profile d); or  V more 

than 85% of the drug dissolved in 15 min – ‘very rapid’ dissolution criteria (profile e).

The corresponding Cp–time profiles (Figure 6.12b), estimated on the basis of the generated GLK-  

specific absorption model, were plotted against the in vivo observed data (Najib et al., 2002), in  

order to develop a level A IVIVC model (Figure 6.13a). The obtained correlation coefficients and  

slopes of the regression lines are given in Table 6.10.

Table 6.10IVIVC statistical parameters for GLK IR tabletsa – slope of the regression line, r –  

coefficient of correlationFigure 6.13 IVIVC plot for GLK IR tablets: (a) convolution approach; (b)  

deconvolution approach



The results indicated that variations in drug input kinetics were well reflected in the simulated in  

vivo profiles. However, it was evident that differences observed in vitro were less pronounced in the 

 predicted PK profiles (the simulated profiles b, c, and d overlapped). The highest degree of deviation 

 from the in vivo observed profile was demonstrated for profile a, representing a scenario in which  

less than 85% of the drug is dissolved. On the other hand, values of the slope close to unity, as well  

as high coefficients of correlation, indicated the presence of a level A correlation for the profiles b, c, 

 d, and e.

In the attempt to establish IVIVC for the same data set using the deconvolution approach, the  

hypothetical GLK in vivo absorption profile estimated by GastroPlus™ was compared with previously  

described in vitro dissolution profiles. Since in vitro drug dissolution was faster than the  

corresponding in vivo process, it was necessary to rescale the time axis when progressing from in  

vitro to in vivo. The IVIVC plot of the percentage dissolved in vitro vs. the percentage absorbed in  

vivo, is presented in Figure 6.13b. The outcomes of deconvolution revealed that the in vitro profile e 

 (stretched by 12-fold linear rescaling of the time axis) has the same general shape (morphology) as  

the estimated hypothetical in vivo dissolution profile, although a good correlation was also achieved  

for the in vitro profiles b, c, and d (Table 6.10). These results were in accordance with those 

obtained  by the convolution approach. Since both convolution and deconvolution approaches were 

successful  in establishing a level A IVIVC, it was suggested that dissolution specification of more 

than 85% GLK  dose dissolved in 60 min may be considered as biorelevant dissolution acceptance 

criteria for GLK IR  tablets.

Other examples can also serve as a good illustration of how GIST can be used to develop IVIVC. In  

our previous work (Kovacevic et al., 2009), a convolution based approach was applied to simulate  

CBZ plasma concentration-time profiles based on different in vitro dissolution rates, with the aim to  

evaluate whether IVIVC for IR and CR CBZ tablets could be established. Dissolution studies of the  

investigated IR and CR CBZ tablets were performed in the United States Pharmacopoeia (USP)  

rotating paddle apparatus at 75 rpm, using 900 mL of various dissolution media. In the case of IR  

tablets, the employed media included water, 0.1, 0.25, 0.5, and 1% sodium lauryl sulfate (SLS)  

aqueous solution, 0.1 M HCl, USP acetate buffer pH 4.5, and USP phosphate buffer pH 6.8. In the  

case of CR tablets, drug release studies were performed in water, 1% SLS, and according to the half-  

change methodology (HCM). The obtained dissolution data were later used as the input function in  

the GastroPlus™ Single Simulation Mode, to evaluate the influence of in vitro drug dissolution rate  

on the predicted CBZ plasma concentration-time profiles. The dissolution profiles used as inputs, and 

 the corresponding Cp–time profiles, are presented in Figure 6.14. PK parameters predicted on the  

basis of different input CBZ dissolution rates and the relevant prediction error statistics are given in  

Tables 6.11 and 6.12. Figures 6.14b and d illustrate that, in the case of CBZ IR tablets, the simulated  

in vivo profiles did not appear to be strongly affected by the differences in drug dissolution rate. The  

best match between the predicted and the observed Cmax and AUC values was accomplished for  

drug dissolution in 0.5 and 1% SLS. An interesting phenomenon concerned the deviations between  

the predicted Cmax and tmax values obtained for different pH dissolution media (water, media

pH 1.2, 4.5, and 6.8), which were not consistent with the almost superimposable in vitro dissolution  

profiles in these media (Figures 6.14c and d). It was postulated that the obtained differences were  

caused by a simulation artifact resulting from the software approximation of the time needed to  

accomplish 100% drug dissolution, which was estimated as 5.5 and 15.4 h for water and pH 6.8  

media, respectively. In the case of CR tablets, the simulated profiles based on CBZ dissolution in 1%  

SLS and HCM were in best agreement with the in vivo observed data, while the PK profile predicted  

on the basis of the CR tablets dissolution in water indicated slow and incomplete drug absorption. It  

was noted that such results were in accordance with the software calculated 39.29 h to be the time



needed for 100% drug dissolution to be accomplished, which exceeds the physiologically relevant GI  

transit time.

In order to develop a level A IVIVC, CBZ plasma concentration profiles simulated on the basis of drug  

dissolution data obtained in water and media containing 1% SLS for IR and CR tablets (Figure 6.15)  

were plotted against the in vivo observed data. Linear regression analysis of the pooled data for 

both  the generic and reference IR and CR tablets indicated high level A IVIVC, especially for 

predictions  based on the in vitro data observed in 1% SLS (Figure 6.16). According to these results, it 

was  suggested that 1% SLS might be considered as the ‘bioperformance’ dissolution medium for 

both the  IR and CR CBZ tablets. However, it was noted that the possibility to obtain a universal IVIVC 

model  for both IR and CR products resulted from the fact that CBZ in vivo behavior is determined by 

its PK  characteristics (i.e. long elimination half-life) rather than the dosage form properties, and that 

any  further generalization of this concept to other compounds should be carefully evaluated.

Another example considering identification of the predictive in vitro dissolution of CBZ formulations  

was given by Zhang et al. (2011). The authors reviewed a set of in vitro dissolution data obtained  

under different conditions for different CBZ products, which were submitted to the FDA, and made a  

selection of the representative in vitro dissolution profiles, which were compared with the

GastroPlus™ predicted CBZ in vivo dissolution profiles in the fed and fasted states. The data  

collected demonstrated that in vitro dissolution of CBZ from the IR suspension, conducted in 900 mL  

water using USP Apparatus 2 with a rotation speed of 50 rpm, was slower than the simulated in vivo

dissolution in the fed state but faster than in vivo dissolution in the fasted state, indicating that the  

employed in vitro dissolution test conditions for CBZ IR suspension could not be considered

biorelevant (Figure 6.17a). In the case of the CBZ IR tablet, in vitro dissolution profiles obtained in  

900 mL media containing 0.1% SLS, using USP Apparatus 2 with paddle speed of 75 rpm, were close

to the in vivo dissolution in the fed state (Figure 6.17b). For the CBZ XR tablet, the dissolution profile  

obtained in 900 mL buffer (pH 1.1, 4.5, and 6.8), using USP Apparatus 1 at 100 rpm, correlated well

with in vivo dissolution under fed conditions (Figure 6.17c). For the XR capsule, the best relationship  

between in vitro and in vivo data under both fasted and fed conditions was achieved with the  

dissolution profile obtained in 900 mL buffer containing 0.1% SLS using USP Apparatus 2 at 50 rpm

(Figure 6.17d). In addition, the repeated simulations performed for fasted state, using the same  

solubility as for the fed state, gave an almost identical in vivo dissolution rate to that obtained under

the fed state, indicating that the differences in in vivo dissolution rates between fasted and fed  

states, for both IR and XR formulations, were caused by the difference in in vivo solubility under  

fasted and fed states.

Another example of using computer simulations to establish IVIVC referred to etoricoxib solid oral  

dosage forms (Okumu et al., 2008). Dissolution profiles of etoricoxib from the film-coated tablets  

were performed in USP Apparatus 2 at 75 rpm, using conventional dissolution media: simulated  

gastric fluid (SGF) and USP-simulated intestinal fluid (USP-SIF) (900 mL), and fasted state simulated  

intestinal fluid (FaSSIF) (500 and 900 mL) as ‘biorelevant’ media. The in vitro data obtained were

then used as input functions in GastroPlus™ to predict the corresponding drug absorption profiles  

(Figure 6.18). A comparison of the simulated profiles with the in vivo observed data (Table 6.13)  

indicated that the profiles obtained in SGF and 900 mL FaSSIF appeared to simulate the in vivo  

profile better when compared with that in SIF and 500 mL FaSSIF. These results suggested that USP-  

SIF might not be the best choice of media, and that recommended 500 mL FaSSIF (Galia et al., 1998;  

Marques, 2004) may not be the right choice of volume for ‘biorelevant’ in vitro testing of etoricoxib  

tablets. However, the simulation results based on the dissolution data obtained in 900 mL FaSSIF and 

 SGF provided a comparatively good IVIVC (r2 = 0.899 and 0.898, respectively).



6.8 Biowaiver considerations

The role of biowaivers in the drug approval process has been emphasized since the introduction of  

BCS (Amidon et al., 1995) and the release of FDA guidance on waiver of in vivo bioavailability and BE  

studies (US Food and Drug Adminstration, 2000). In this context, the term biowaiver refers to the  

situations in which in vivo BE studies can be substituted with the relevant in vitro data. The main  

premise, when adopting the biowaiver concept, was to reduce time and costs, and to offer benefits  

in terms of ethical considerations. The most common type of biowaiver adopted by the regulatory  

authorities includes the application of the BCS-based scheme (similar or rapid/very rapid dissolution  

profiles of the test and reference product in pH 1.2, 4.5, and 6.8 media) or the application of IVIVC.  

According to the FDA, biowaivers for IR drug products may be requested solely in the cases of highly  

soluble and highly permeable substances (BCS class I) when the drug product is (very) rapidly  

dissolving and exhibits similar dissolution profile to the reference product, while the IVIVC-based  

approach has been narrowed down to applications for XR products (US Food and Drug  

Administration, 2000, 1997). The EMA and WHO issued guidelines widened the eligibility for  

biowaiver to some BCS class III (eligible if very rapidly dissolving) (European Medicines Agency, 2010; 

 WHO Expert Committee on Specifications for Pharmaceutical Preparations, 2006) and BCS class II  

drugs (eligible for biowaiver if the dose-to-solubility ratio at pH 6.8 is 250 mL or less and high  

permeability is at 85% absorbed) (WHO Expert Committee on Specifications for Pharmaceutical  

Preparations, 2006). Also, it was pointed out that the biowaiver concept concerning BCS II and III  

drugs should be further relaxed (e.g. BCS class II drugs eligible for biowaiver under the assumption  

that the drug dissolves completely during the GI passage (Yu et al., 2002), and BCS class III  

compounds eligible if rapidly dissolving (Tsdume and Amidon, 2010)).

Several examples from the literature describe how GIST can be used to identify BCS class(es) of 

drugs  eligible for biowaiver. In the previously mentioned in vitro-in silico study of GLK IR tablets, 

simulation  results demonstrated that differences in GLK in vitro dissolution kinetics, such as 85% 

drug dissolved  within the 15 to 60 min time frame, are not expected to reflect on the in vivo PK 

profile. These  results support the assumption that, in the case of BCS class II drugs, complete in vivo 

dissolution  might occur at later time points than for highly soluble BCS class I drugs. This would 

allow wider  biorelevant in vitro dissolution specification, than very rapid/rapid in vitro dissolution, 

to be set. In  addition, in vitro results indicated that GLK solubility and dissolution from IR tablets are 

not  expected to be the rate-limiting factors for GLK in vivo absorption, and since this was a highly  

permeable drug, there was a rationale to postulate that biowaiver extension might be applicable in  

the case of GLK IR tablets (Grbic et al., 2011).

Another example is the work of Okumu et al. (2009), who combined in vitro results with in silico  

simulations using GastroPlus™, in order to support biowaiver for IR etoricoxib solid oral dosage  

forms. They used in vitro measured solubility and dissolution data in different media, along with  

caco-2 assessed drug permeability as input functions in the program in order to predict etoricoxib  

absorption profile. The simulation results revealed that drug absorption after tablet administration  

was similar to the absorption of an oral solution, indicating fast and complete drug absorption.

Furthermore, solubility results indicated etoricoxib behaves like a BCS class I drug in an acidic  

environment, and the dissolution transfer model confirmed that the drug stays in solution when  

transferred from the acidic environment of the stomach into the small intestine. Therefore, it was  

concluded that etoricoxib might be a suitable candidate for biowaiver.

In our CBZ study (Kovacevic et al., 2009), biowaiver justification for this BCS class II drug was  

elaborated upon. The GastroPlus™ generated CBZ-specific absorption model was used to predict



drug plasma concentration-time profiles based on different in vitro dissolution rates as input  

function. The results revealed that high dissolution rates (i.e. > 85% of drug dissolved in < 10 min)  

were not related to the significant increase in Cmax in comparison to the in vivo observed values,  

thus indicating that the predicted plasma concentration profiles were rather insensitive to the  

differences in drug input kinetics. Following these results, it was concluded that there is a rationale  

for considering CBZ biowaiver extension. However, it was stressed that, at present, other factors  

such as CBZ narrow therapeutic index and vital indication are the limitations for granting marketing  

authorization based on the in vitro data alone.

Tubic-Grozdanis et al. (2008) also demonstrated that GI simulation of oral drug absorption can aid in  

identification of BCS class II biowaiver candidate drugs. They used several weakly acidic (i.e.  

ibuprofen, ketoprofen, diclofenac, mefenamic acid, and piroxicam) and weakly basic (i.e. verapamil,  

miconazole, and terbinafine) BCS class II model compounds, and GIST as a tool to study how  

differences in dissolution rates would affect drug bioavailability and other PK properties. Theoretical  

dissolution profiles of two IR drug products, namely ‘rapid IR’ (released > 90% of the dose within

10 min) and ‘slow IR’ (released 80% in 45 min) were designed and used to predict plasma  

concentrations vs. time and absorption curves for each compound used in the simulations.

Depending on the drug properties, either GastroPlus™ Single Simulation Mode or Virtual Trial (e.g.  

for verapamil, which is a highly variable drug) were selected for the simulations. PSA was performed  

in order to assess the influence of drug properties (i.e. particle size, solubility, precipitation time) on  

the fraction of drug absorbed. According to the obtained results, and supported by previously  

published biopharmaceutical data on the selected model drugs, it was deduced that ibuprofen,  

ketoprofen, diclofenac, piroxicam, and terbinafine could be considered as candidates for biowaiver.  

However, GI simulation indicated that mefenamic acid and miconazole were not eligible for granting  

a biowaiver. According to the predictions, mefenamic acid exhibited solubility and dissolution 

limited  absorption in the small intestine. Moreover, this drug lacked a predictive dissolution method 

which  would indicate its biopharmaceutical properties. In the case of miconazole, it was found that 

oral  drug absorption was limited by dissolution rate and by the saturated solubility, indicating that a 

 highly dosed drug would probably precipitate in the GI milieu.

Tsume et al. (2010) investigated the ability of GIST to predict oral absorption of the selected BCS  

class I (propranolol and metoprolol) and BCS class III drugs (cimetidine, atenolol, amoxicillin), and  

performed in silico BE studies to estimate the feasibility of extending biowaivers to BCS class III  

drugs. In addition, the significance of ‘rapid dissolution’ and ‘very rapid dissolution’ criteria for BCS

class III drugs was evaluated. The GastroPlus™ Virtual Trial model was used to assess the influence of 

 drug dissolution kinetics on oral drug absorption, Cmax, AUC, and BE. A set of virtual in vitro  

dissolution data (corresponding to 85% release in 15, 30, 45, 60, 90, 120, and 180 min) was used as

input function in GastroPlus™ to predict the drug PK profile. For each BCS class III drug, virtual trial  

(500 subjects) with T85% = 15 min (‘very rapid dissolution’), and virtual trials (24 subjects) at  

different release rates (from T85% = 30 min to T85% = 180 min) were performed as ‘reference’ and  

‘samples’, respectively. The results of the predictions (mean Cmax and AUC0-inf ± SDs), with

different release rates used as ‘samples,’ were compared with the reference results to determine 

BE.  The results demonstrated BE up to T85% = 45 min (for amoxicillin) or T85% = 60 min (in the 

cases of  cimetidine and atenolol) compared to the reference result of T85% = 15 min, including BE 

between  very rapid (> 85% solubility in 15 min) and rapid dissolution (> 85% solubility in 30 min). 

These  findings indicated that the permeability of BCS class III compounds was the rate-limiting step 

for oral  drug absorption rather than their dissolution. Overall, the obtained results suggested that 

extending  the biowaiver to include IR dosage forms of BCS class III drug products is feasible, and 

moreover,



that biowaivers for BCS class III drug products with suitably rapid dissolution would ensure  

‘bioperformance’ of these pharmaceutical products.

Crison et al. (2012) employed in silico modeling to justify biowaiver for BCS class III drug metformin  

hydrochloride. GastroPlus™ modeling was performed within the range of gastric transit times  

expected in human subjects, to show the broad range of release rates that are expected to have no  

impact on AUC and Cmax, and therefore result in drug products BE. It should be noted that, 

although  metformin exhibits nonlinear pharmacrokinetics with respect to dose, the absorption 

model  developed in this study was based on 500 mg data, so the simulation results were limited to 

that  dose. Two clinical studies for IR formulations were used in the model development and 

additional  clinical studies, one for IR and one for ER formulation, were used to confirm that the 

model was  predictive over a wide range of drug release times. Drug release profiles representing 

100% of  metformin released in 5 min up to 14 h were used as inputs for the model. The simulations 

to  predict plasma concentrations of metformin corresponding to different release rates were  

performed as virtual trials, so that inter-subject variability could be introduced into the predictions.

In order to prove model predictability, the results of virtual trial simulations (defined as ‘test’) were  

compared with the observed clinical data (defined as ‘reference’). According to the simulation  

results, metformin release rates within 100% of drug, dissolved in 5 min up to 2 h did not have a  

statistically significant effect on Cmax and AUC0-t. In addition, it was shown that within this range of  

dissolution rates, metformin products are expected to be bioequivalent, irrespective of the results of 

 the f2 test. In conclusion, the results illustrated that the described in vitro-in silico approach might  

be used to waive in vivo BE studies for metformin drug product. Furthermore, it was deduced that in

silico modeling and simulation, which includes all the key parameters that fully define the absorption 

 of BCS class III compounds (i.e. dissolution, permeability, and GI residence time), should be more  

mechanistically accurate and robust for BE evaluation than statistical comparison of in vitro release  

profiles.

6.9 Conclusions

The various examples presented demonstrate that GI modeling has become a powerful tool to study 

 oral drug absorption and pharmacrokinetics. This method offers a distinctive opportunity to  

mechanistically interpret the influence of the underlying processes on the resulting PK profile.

Namely, by understanding the complex interplay between drug physicochemical and PK properties,  

formulation factors, and human physiology characteristics, we might gain an insight into the  

influence of a particular factor or set of factors on drug absorption profile, and understand possible  

reasons for poor oral bioavailability. In this context, PSA is particularly useful, since it allows  

identification of critical factors affecting the rate and extent of drug absorption prior to formulation  

development. In addition, PSA can be used to optimize parameter values for which accurate data are 

 not available. Other features, such as the Virtual Trials and PBPK modeling, enable even more  

advanced predictions of, for example, inter-individual variability or factors contributing to variability  

in disposition, thus further enhancing the reliability of in silico absorption modeling.

The examples also demonstrate that the in vitro-in silico approach can be successfully used to  

identify biorelevant dissolution specifications for the in vitro assessment of the drug product of  

interest, and facilitate the choice of the relevant in vitro test conditions for the prediction of the  

drug release process in vivo. Finding the in vitro dissolution test conditions that best predict drug in  

vivo performance is a substantial part of product development and quality testing strategy, thus  

implying that mechanistically based absorption modeling might facilitate the QbD approach in drug



development. In addition, it was illustrated that GI simulation, in conjunction with IVIVC, might  

contrive identification of biowaiver candidate drugs.

In view of the complexity of the described GastroPlus™ model and a number of data required for  

simulation, it is evident that the reliability of the modeling results is dependent on both the model  

and the selected data set. Therefore, the necessary input data have to be carefully selected and/or  

experimentally verified. However, with the right selection of input data, well-validated absorption  

model, and correct interpretation of modeling results, GI simulation shows great promise in  

assessing biorelevant features of formulated drugs.

In summary, computational absorption modeling offers an efficient and cost-effective way to assess  

drug bioperformance in a relatively short time frame, thus becoming an indispensable tool that  

facilitates formulation development process. However, certain gaps still exist, mostly concerning 

the  lack of relevant information on drug and dosage form properties required for accurate 

prediction of  drug PK profile. Also, lack of confidence in in silico predictions is one of the reasons 

why these  methods have not yet been adequately exploited by the industry. With the new 

information  regarding drug biopharmaceutical properties being collected, it is expected that GI 

modeling will be  more often used by formulation scientists. In this context, it should be stressed 

that large amounts  of valuable data on drug biopharmaceutical properties still lie within 

pharmaceutical companies and  regulatory agencies, and even partial access to these data would be 

helpful to generate and/or  validate in silico absorption models. Published examples of the 

successful application of in silico  techniques would also assist in promoting their wider acceptance.
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