Biostatistics Z -Test

Deepa Anwar

Using P-values for a z-Test

The *z*-test for the mean is a statistical test for a population mean. The *z*-test can be used when the population is normal and σ is known, or for any population when the sample size *n* is at least 30.

The test statistic is the sample mean $\overline{\chi}$ and the standardized test statistic is z.

$$z = \frac{x - \mu}{\sigma / \sqrt{n}}$$
 $\frac{\sigma}{\sqrt{n}} = \text{standard error} = \sigma_{\overline{x}}$

When $n \ge 30$, the sample standard deviation *s* can be substituted for σ .

Using *P*-values for a *z*-Test

Using *P*-values for a *z*-Test for a Mean μ

In Words

- 1. State the claim mathematically and verbally. Identify the null and alternative hypotheses.
- 2. Specify the level of significance.
- 3. Determine the standardized test statistic.
- 4. Find the area that corresponds to *z*.

In Symbols

State H_0 and H_a .

Identify α .

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

Continued.

Using P-values for a z-Test

Using *P*-values for a *z*-Test for a Mean *µ* In Words In Symbols

- 5. Find the *P*-value.
 - a. For a left-tailed test, P = (Area in left tail).
 - b. For a right-tailed test, P = (Area in right tail).
 - c. For a two-tailed test, P = 2(Area in tail of test statistic).
- 6. Make a decision to reject or fail to reject the null hypothesis.
- 7. Interpret the decision in the context of the original claim.

Reject H_0 if *P*-value is less than or equal to α . Otherwise, fail to reject H_0 .

Hypothesis Testing with *P*-values Example:

A manufacturer claims that its rechargeable batteries are good for an average of more than 1,000 charges. A random sample of 100 batteries has a mean life of 1002 charges and a standard deviation of 14. Is there enough evidence to support this claim at $\alpha = 0.01$?

 $H_{\rm o}: \mu \le 1000$

 $H_a: \mu > 1000$ (Claim)

The level of significance is $\alpha = 0.01$.

The standardized test statistic is

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} = \frac{1002 - 1000}{14 / \sqrt{100}}$$
$$\approx 1.43$$

Continued.

Hypothesis Testing with *P*-values Example continued:

A manufacturer claims that its rechargeable batteries are good for an average of more than 1,000 charges. A random sample of 100 batteries has a mean life of 1002 charges and a standard deviation of 14. Is there enough evidence to support this claim at $\alpha = 0.01$?

 $H_0: \mu \le 1000$ $H_a: \mu > 1000$ (Claim) z = 1.43The area to the right of z = 1.43 is P = 0.0764. $\alpha = 0.01$, fail to reject H_0 .

At the 1% level of significance, there is not enough evidence to support the claim that the rechargeable battery has an average life of at least 1000 charges.