What does "Statistical Mean" mean?

The statistical mean refers to the mean or average that is used to derive the central tendency of the data in question. It is determined by adding all the data points in a population and then dividing the total by the number of points. The resulting number is known as the mean or the average.

Simple Mean Method

Find the mean of the set of numbers below

3, 4, -1, 22, 14, 0, 9, 18, 7, 0, 1

Solution

The first step is to count how many numbers there are in the set, which we shall call \mathbf{n}

n = 10

The next step is to add up **all** the numbers in the set

sum = 3 + 4 + -1 + 22 + 14 + 0 + 9 + 18 + 7 + 0 + 1

sum = 77

The last step is to find the actual mean by dividing the sum by n

 $mean = \frac{sum}{n}$ $mean = \frac{77}{10}$ mean = 7.7

Direct Method

Weight (in Kgs)	67	70	72	73	75
Number of students	4	3	2	2	1

Find Solution	the		average	weight.
Weight (in kg)xi	Frequency (fi)	fixi		
67	4	268		
70	3	210		
72	2	144		
73	2	146		
75	1	75		
	N= Σ fi = 12	Σ fixi = 843		

 $\Sigma f_i x_i 843$ x = ----- = 70.25 kg $\Sigma f_i 12$

Short Cut Method

Weight(in kg)	67	70	72	73	75
Number of students	4	3	2	2	1

Find the mean by using short-cut method. Solution : Let the assumed mean = A = 72of di = xi - A fi di Weight(in No. students (fi) = xi - 72 kg) 67 4 -5 - 20 -2 70 3 - 6

72	2	0	2			
73	2	1	2			
75	1	3	3			
	Σ fi = 12		Σfi di = -21			
$\sum f_{i} = \frac{1}{x} = A + \frac{1}{N}$	= 12 , ∑fiui	Σ fi	di =	-21 ,	A =	72
$\Rightarrow Mean \\ \Rightarrow Mean = 70$	= 72 0.25 kg.	+ (-21)	/ 12	= 72	- 7 /	4
Find the	mean c	of the f	following	frequency	distribution	:
Class interva	al 0- 1 10 2	0- 20- 30- 0 30 40	40- 50			
Number workers (f) Solution	^{of} 7 1	0 15 8	10			:
Class interval	Class ma (xi)	rk Frequency (fi)	y di = x 25	i - _{fi di}		
0 - 10	5	7	-20	- 140		
10 - 20	15	10	-10	- 100		
20 - 30	25	15	0	0		
30 - 40	35	8	10	80		
40 - 50	45	10	20	200		
		$\Sigma fi = 50$		40		

 $A = 25; N = 50 \text{ and } \Sigma \text{fi} \text{ di} = 40$ $\overline{\mathbf{x}} = \mathbf{A} + \mathbf{h} \left[\frac{\mathbf{1}}{N} \sum \text{fi} \text{ ui} \right]$

\Rightarrow	Mean	=	25	+	40	/	50
\Rightarrow Mean =	25.8						

Step - Deviation Method

Variate	5	10	15	20	25	30
Frequency	20	43	75	67	72	45

Solution:

Let	the	assumed	mean	be	А	=	20	and	h	=	5.
Variat (xi)	e Fr (fi)	equency)	Deviatio xi - 20	on= d	i = ui 20	= (xi)/ 5	- fi ui				
5	20		-15		-3		-60				
10	43		-10		-2		-86				
15	75		-5		-1		-75				
20	67		0		0		0				
25	72		5		1		72				
30	45		10		2		90				
	N 32	$= \Sigma fi = 2$:				-59				
$N = \frac{1}{x}$	322 A + h	, A = <u>1</u> ∑fiui	20 ,	h	= 5	and	Σ	fi ı	ui ⁼	= -	59
⇒ ⇒ ∴ Mear	Mean $n = 19.9$	— — — Mean 09	20	+ =	5	(20	-	59 _	,	/	322) 0.91
Find	the	mear	n of	f	ollowin	g	frequ	ency	d	istrib	ution:
Class i	interva	$1 \begin{array}{c} 0 & -1 \\ 10 & 2 \end{array}$	$ \begin{array}{c} 0 & -20 \\ 0 & 30 \end{array} $	- 30 40	- 40 - 50						

 Number workers
 of 7
 10
 15
 8
 10

Solution

Class	Mid	Frequency	di = xi ui = (xi - fi			
intervals	values (xi)	(fi)	- 25	25) / 10	ui	
0-10	5	7	-20	-2	-14	
10-20	15	10	-10	-1	-10	
20-30	25	15	0	0	0	
30-40	35	8	10	1	8	
40-50	45	10	20	2	20	
		$N = \Sigma f_1 = 50$)		4	

A = 25 , h = 10 , N = 50 and Σ fi ui = 4 $\overline{x} = A + h \left[\frac{1}{N} \sum fi ui \right]$ \Rightarrow Mean = 25 + 10 x (4 / 50) \Rightarrow Mean = 25 + 0.8 \therefore Mean = 25.8