B.A./B.Sc. Part 1 Mathematics

BMG 101 Algebra and Trigonometry

(Duration: One Year)

Unit II : Application of matrices to a system of linear (both homogenous and non-homogeneous) equations. Theorems on consistency of a system of linear equations. Relations between the roots and coefficient of general polynomial equation in one variable. Transformation of equations. Descarte’s rule of signs. Solution of cubic equation (Cardon method).

Text Books :

1. L.N. Herstein, Topics in Algebra, Wiley Ltd., New Delhi, 1975

Reference Books :

B.A./B.Sc. Part 1 Mathematics

BMG 102 Calculus

(Duration: One Year)

Unit II : Curvature, Tests for concavity and convexity. Points of inflexion. Multiple points. Tracing of curves in Cartesian and polar coordinates.

Unit IV : Linear equation and equations reducible to the linear form. Exact differential equations. First order higher degree equations solvable of x. y. p. Clairaut’s form and singular solutions. Geometrical meaning of a differential equation. Orthogonal trajectories.

Text Books :

Reference Books :
B.A./B.Sc. Part 1 Mathematics

BMG 102 Vector Analysis and Geometry
(Duration: One Year)

Unit I

Unit II
Vector integration. Theorems of Gauss, Green, Strokes and problems based on these.

Unit III

Unit IV
Equation of cone with given base, Generators of cone, condition for three mutually perpendicular generators. Right circular cone, Equation of cylinder and its properties.

Unit V

Text Books:

Reference Books:
Unit I : Mathematical Concepts and Computers
Logarithmic relations, curve sketching, linear graphs and calculation of slopes, differentiation of functions like k^x, e^x, x^n, $\sin x$, $\log x$, maxima and minima, partial differentiation and reciprocity relations, Integration of some useful/relevant functions; permutations and combinations. Factorials. Probability.

General Introduction to computers, different components of a computer, hardware and software, input-output devices, binary numbers and arithmetic; introduction to computer languages. Programming operating systems.

Unit II
Gaseous States
Postulates of kinetic theory of gases, deviation from ideal behavior, van der Waals equation of state.

Critical Phenomena : PV isotherms of real gases, continuity of states, the isotherms of van der Waals equation, relationship between critical constants and van der Waals constants, the law of corresponding states, reduced equation of state.

Molecular Velocities : Root mean square, average and most probable velocities. Qualitative discussion of the Maxwell’s distribution of molecular velocities, collision number, mean free path and collision diameter. Liquefication of gases (based on Joule Thomson effect).

Unit III
Liquid State & Colloidal
Intermolecular forces, structure of liquids (a qualitative description).

Structural differences between solids, liquids and gases.
Liquid crystals: Difference between liquid crystal, solid and liquid. Classification, structure of nematic and cholesteric phases. Thermography and seven segment cell.

Definition of colloids, classification of colloids.

Liquids in solids (gels) : classification, preparation and properties, inhibition, general applications of colloids.

Unit IV
Solid State
Definition of space lattice, unit cell.
Laws of crystallography -
(i) Law of constancy of interfacial angles.
(ii) Law of rationality of indices.

X-ray diffraction by crystals. Derivation of Bragg equation. Determination of crystal structure of NaCl, KCl and CsCl (Laue’s method and powder method).
Unit V Chemical Kinetics and Catalysis 13 Hrs

Chemical kinetics and its scope, rate of a reaction, factors influencing the rate of a reaction - concentration, temperature, pressure, solvent, light, catalyst. Concentration dependence of rates, mathematical characteristics of simple chemical reactions - zero, order, first order, second order, pseudo order, half life and mean life. Determination of the order of reaction - differential method, method of integration, method of half life period and isolation method.

Radioactive decay as a first order phenomenon.

Experimental methods of chemical kinetics: conductometric, potentiometric, optical methods, polarimetry and spectrophotometer.

Theories of chemical kinetics: effect of temperature on rate of reaction, Arrhenius equation, concept of activation energy.

Simple collision theory based on hard sphere model, transition state theory (equilibrium hypothesis). Expression for the rate constant based on equilibrium constant and thermodynamic aspects.

Catalysis, characteristics of catalysed reactions, classification of catalysis, miscellaneous 'examples'.
Unit I Atomic Structure 12 Hrs
Idea of de Broglie matter waves, Heisenberg uncertainty principle, atomic orbitals, Schrodinger wave equation, significance of Ψ and Ψ^2, quantum numbers, radial and angular wave functions and probability distribution curves, shapes of s, p, d orbitals. Aufbau and Pauli exclusion principles, Hund’s multiplicity rule. Electronic configurations of the elements, effective nuclear charge.

Periodic Properties.
Atomic and ionic radii, ionization energy, electron affinity and electronegativity definition, methods of determination or evaluation, trends in periodic table and applications in predicting and explaining the chemical behaviour.

Unit II Chemical Bonding- Part I 13 Hrs
Covalent Bond - Valence bond theory and its limitations, directional characteristics of covalent bond, various types of hybridization and shapes of simple inorganic molecules and ions. Valence shell electron pair repulsion (VSEPR) Theory to NH_3, H_2O^+, SF_4, ClF_3, ICl_2, and H_2O, MO theory, homonuclear and heteronuclear (CO and NO) diatomic, molecules, multicenter bonding in electron deficient molecules, bond strength and bond energy, percentage ionic character from dipole moment and electronegativity difference.

Weak Interactions - Hydrogen bonding, van der Waals force.

Unit III Chemical Bonding-Part II & s-Block Elements 13 Hrs
Ionic Solids - Ionic structures, radius ratio effect and coordination number, limitation of radius ratio rule, lattice defects, semiconductors, lattices energy and Born-Haber cycle, solvation energy and solubility of ionic solids, polarizing power and polarisability of ions. Fajan’s rule. Metallic bond-free electron, valence bond and band theories.

s-Block Elements.
Comparative study, diagonal relationships, salient features of hydrides, solvation and complexation tendencies including their function in biosystems, an introduction to alkyls and ariys.

Unit IV p-Block Elements Part-I 13 Hrs
Comparative study (including diagonal relationship) of groups 13-17 elements, compounds like hydrides, oxies, oxyacids and halides of groups 13-18, hydrides of boron-diborane and higher boranes, borazine, borohydrides

Unit IV p-Block Elements Part-II & Chemistry of Noble Gases 13 Hrs
Fullerenes, carbides, fluorocarbons, silicates (structural principle), tetrathionyl tetranitride, basic properties of halogens, interhalogens. Chemical properties of the noble gases, chemistry of xenon, structure and bonding in xenon compounds.
PAPER III Organic Chemistry

MM 33 60 Hrs (2Hrs/week)

Unit I Structure and Bonding 13 Hrs
Hybridization, bond lengths and bond angles, bond energy, localized and delocalized chemical bond, van der Waals interactions, inclusion compounds, clatherates, charge transfer complexes, resonance, hyperconjugation, aromaticity... inductive and field effects, hydrogen bonding.

Mechanism of Organic Reactions
Curved arrow notation, drawing electron movements with arrows, half-headed and double-headed arrows, homolytic and heterolytic bond breaking. Types of reagents- electrophiles and nucleophiles. Types of organic reactions, Energy consideration.

Reactive intermediates carbocations, carbanions, freeradicals, carbenes arynes and... nitrrene with example). Assigning formal charges on intermediates and other ionic species.

Methods of determination of reaction mechanism (product analysis, intermediates, isotope effects, kinetic and stereochemical studies).

Unit II Stereochemistry of Organic Compounds 12 Hrs
Concept of isomerism. Types of isomerism.

Optical isomerism elements of symmetry, molecular chirality, enantiomers, stereogenic centre, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centres, diastereomers, threo and erythro diastereomers, meso compounds, resolution of enantiomers, inversion, retention and racemization.

Relative and absolute configuration, sequence rules, D & Land R & S systems nomenclature. Geometric isomerism - determination of configuration of geometric isomers. E & Z system of nomenclature, geometric isomerism in oximes and alicyclic compounds.

Difference between configuration and conformation.

Unit III Alkanes and Cycloalkanes 15 Hrs
IUPAC nomenclature of branched and unbranched alkanes, the alkyl group, classification of carbon atoms in alkanes. Isomerism in alkanes, sources, methods of formation (with special reference to Wurtz reaction, Kolbe reaction, Corey-House reaction and decarboxylation of carboxylic acids), physical properties and chemical reactions of alkanes.

Mechanism of free radical halogenation of alkanes : orientation, reactivity and selectivity. Cycloalkanes - nomenclature, methods of formation, chemical reactions, Baeyer’s strain theory and its limitation. Ring strain in small rings (cyclopropane and cyclobutane), theory of strainless rings. The case of cyclopropane ring, banana bonds.

Arenes and Aromaticity
Nomenclature of benzene derivatives. The aryl groups. Aromatic nucleus and side chain.

Methods of formation and chemical reactions of alkylbenzenes, alkynylbenzenes and biphenyl.

Unit IV Alkenes, Cycloalkenes, Dienes and Alkynes 12 Hrs
Nomenclature of alkenes, methods of formation, mechanisms of dehydration of alcohols and dehydrohalogenation of alkyl halides, regioselectivity in alcohol dehydration. The Saytzeff rule. Hofman elimination, physical properties and relative stabilities of alkenes.

Chemical reactions of alkenes - mechanisms involved in hydrogenation, electrophilic and free radical additions, Markownikoff’s rule, hydroboration-oxidation with KMnO4. Polymerization of alkenes. Substitution at the allylic and vinylic positions of alkenes. Industrial applications of ethylene and propene.

Unit V Alkyl and Aryl Halides 8 Hrs
Nomenclature and classes of alkyl halides, methods of formation, chemical reactions. Mechanisms of nucleophilic substitution reactions of alkyl halides, SN2 and SN1 reactions.

Polyhalogen compounds: chloroform, carbon tetrachloride.

Methods of formation of aryl halides, nuclear and side chain reactions. The addition-elimination and the elimination-addition mechanisms of nucleophilic aromatic substitution reactions. Relative reactivities of alkyl halides vs allyl, vinyl and aryl halides. Synthesis and uses of DDT and BHC Freons.
Practicals

Inorganic 12 Marks
Macro/Semimicro Analysis - cationanlysis, separation and identification of ions from group I, II, III, IV, V and VI. Anions Analysis.

Organic Chemistry 12 Marks
1. Calibration of Thermometer
2. Determination of Melting Points.
3. Determination of Boiling Points.
5. Distillation
6. Crystallization
7. Decolorisation and Crystallization using charcoal.
8. Sublimation
9. Qualitative Analysis
 Detection of extra elements (N, S and halogens) and functional groups (phenolic, carboxylic, carbonyl, esters, carbohydrates, amines, amides, nitro and anilide) in simple organic compounds.

Practicals Chemistry

Chemical Kinetics 12 Marks
1. To determine the specific reaction rate of the hydrolysis of methyl acetate/ethyl acetate catalyzed by hydrogen ions at room temperature.
2. To study the effect of acid strength on the hydrolysis on an ester.
3. To compare the strengths of HCl and H2SO4 by studying the kinetics of hydrolysis of ester.
4. To study kinetically the reaction rate of decomposition of iodide by H2O2.

Distribution Law
1. To study the distribution of iodine between water and CCl4.
2. To study the distribution of benzoic acid between benzene and water.

Colloids
1. To prepare arsenious sulphide sol and compare the precipitating power of monobr and trivalent anions.

Viscosity, Surface Tension
1. To determine the percentage composition of a given mixture (non interacting systems) by viscosity method.
2. To determine the viscosity of amyl alcohol in water at different concentrations and calculate the excess viscosity of these solutions.
3. To determine the percentage composition of a given binary mixture by surface tension method (acetone & ethyl methyl ketone).
Course 1: MECHANICS, OSCILLATIONS AND PRIORITIES OF MATTER
NUMERICALS PROBLEMS BASED ON THE TOPICS MUST BE ASKED IN EACH UNIT

1.1 Mechanics

Laws of motion, motion in a uniform field, components of velocity and acceleration in different coordinate systems. Uniformly rotating frame, centripetal acceleration, Coriolis force and its applications. Motion under a central force, Kepler’s law. Gravitational law and field. Potential due to a spherical body.

Gauss and Poisson equations for gravitational self-energy.

System of particles, center of mass, equation of motion, conservation of linear and angular moments, conservation of energy, single-stage and multistage rockets, elastic and inelastic collisions.

1.2 Oscillations and Rigid Body Motion

Rigid body motion, rotational motion, moments of inertia and their products, principal moments and axes. Euler’s equation.

Potential well and periodic oscillations, case of harmonic oscillations, differential equation and its solution, kinetic and potential energy, examples of simple harmonic oscillations, spring and mass system, simple and compound pendulum, torsional pendulum, bifilar oscillations, Helmholtz resonator, LC circuit, librations of a magnet, oscillations of two masses connected by a spring.

1.3 Super Position of Harmonic Motion

Superposition of two simple harmonic motions of the same frequency along the same line, interference, superposition of two mutually perpendicular simple harmonic vibrations of the same frequency, Lissajous figures, case of different frequencies.

Two coupled oscillators, normal modes, N coupled oscillators, damped harmonic oscillations, power dissipation, quality factor, examples, driven harmonic oscillator, transient and steady states, power sorption, resonance in systems with many degrees of freedom.

1.4 Mechanics

The emphasis here should be on the mechanical aspects and not on the details of the apparatus mentioned which are indicated as applications of principles involved.

As an accelerating field, electron gun, case of discharge tube; linear accelerator. E as deflecting field O, sensitivity, fast CRO.

Transverse B field; 180° deflection, mass spectrograph or velocity selector, curvatures of tracks for energy determination for nuclear particles; principles of a cyclotron.

Mutually perpendicular E and B fields - velocity selector, its resolution.

Parallel E and B fields; positive ra parabolas, discovery of isotopes, elements of mass spectrography, principle of magnetic focusing (lens).
1.5 **Properties of Matter**

Elasticity, small deformation, Hook’s law, elastic constrants for an isotropic solid, beams supported at both the ends, cantilever, toralon of a cylinder, bending moments and ahearing foren.

Kinematics of moving fluids, equations of continuity, Euler’s equation, Bernauli’s theorem, viscous fluids, streamline and turbulent flow, Poisculle’s law. Capaillary tube flow, Reynold’s number, Stokes law.

Surface tension and surface energy, molecular interpretation of surface tension, pressure on a curved liquids surface, wetting.

Text and Reference Books

Course 2 : **ELECTRICITY, MAGNETISM AND ELECTROMAGNETIC THEORY NUMERICALS PROBLEMS BASED ON THE TOPICS MUST BE ASKED IN EACH UNIT**

2.1 **Mathematical Background**

Scalars and vectors, dot and cross products, triple vector product, gradient of a scalar field and its geometrical interpretation, divergence and curl of a vector field, line surface and volume integrals, flux of a vector field, Gauss’s divergence theorem, Green’s theorem and Stokes theorem.

Functions of two and three variables, partial derivatives, geometrical interpretation of partial derivatives of functions of two variables. Total differential of a function of two and three variables, higher order derivatives, applications.

Repeated integrals of a function of more than one variables, definition of a double and a triple integral, evaluation of double and triple integrals as repeated integrals, change of variables of integration, Jacobian applications.

2.2 **Electrostatics**

Coulombs law in vaccum expressed in vector forms, calculations of E for simple distributions of charged at rest, dipole and quadrupole fields.

Work done on a charge in an electrostatic field expressed as a line integra, conservative nature of the electrostatic field. Electric potential \(\Phi E = _V \Phi \), torque on a dipole in a uniform electric field and its energy, flux of the electric field, Gauss’s law and its application form finding E for Symmetric charge distributions, Gaussian pillbox, fields at the surface of a conductor, screening of E field by a conductor, capacitors, electrostatic field energy, force per unit area of the surface of a conductor in an electric field, conducting sphere in a uniform electric field, point charge in front of a grounded infinite conductor.
Dielectrics, parallel plate capacitor with adielectric, dielectric constant, polarization and polarization vector, displacement vector D, molecular interpretation of Claussius-Mossotti equation, boundary conditions satisfied by E and D at the interface between two homogenous dielectrics, illustration through a simple example.

2.3 Electric Currents (steady and alternation)

Steady current, current density J, non-steady currents and continuity equation, Kircholts law and analysis of multiloop circuits, rise and decay of current in LR and CR circuits, decay constant, tansients in LCR circuits, AC circuits, complex numbers and their applications solving AC circuits problems, complex apedance and reactance, series and parrellel resonance, Q factor, power consumed by an AC circuit, power factor, Y and networks and transmission of electric power.

2.4 Magnetostatics

Force on a movind charge; Lorentz force equation and definition of B, force on a straight conductor carrying current in a uniform magnetic field, torque on a current loop, magnetic diploc moment, angulr momentum and gyromagnetic ratio.

Piot and Savart’s Law, calculation of H order in simple geometrical situations, Ampere’s Law V.B = 0, V K B = μ. J. Field due to a magnetic dipole, magnetization current, magnetization vector, Half order field, magnetic permeability (linear cases), interpretation of a bar magnet as a surface distribution of solenoidal current.

2.5 Time Varying Fields and Electromagnetic Waves

Electromagnetic induction, Faraday’s law, electromotive force, \(\Sigma = \int \mathbf{E} \cdot d\mathbf{r} \), integral and differential forms of Faraday’s law, mutual and self inductance, transformers, energy in a static magnetic field. Maxwell’s displacement current, Maxwell’s equations, electromagnetic field energy density.

The wave equation satisfied by E and B, plane electromagnetic wave in vacuum, Poynting’s vector, reflection at a plane boundary of dielectrics, polarization by reflection and total internal reflection. Faraday effect, waves in a conductung medium, reflection and refraction by the ionosphere.

Text and Reference Books

Berkeley Physics Course; Electricity and Magnetism, Ed. E.M. Purcell (McGraw-Hill)
D.J. Griffith; “Introduction to Electrodynamics” (Prentice Hall of India)
Reitz and Milford, “Electricity and Magnetism (Addition- Wesley)
A. S. Mahajan and A.A. Rangwala; “Electricity and Magnetism” (Tata McGraw-Hill)
A.M. Portis; “Electromagnetic Fields”.
Pugh and Pugh, “Principles of Electricity and Mangnetism” (Addison-Welsley).
S. S. Atwood; “Electricity and Magnetism” (Dover).
Course 3 LABORATORY I

18 experiments should be performed

Mechanics, Oscillation and Properties of Matter

3.1.1 Mechanics
Study of laws of parallel and perpendicular axes for moment of inertia.
Study of conservation of momentum in two dimensional oscillations.

3.1.2 Oscillations
Study of a compound pendulum.
Study of damping of a bar pendulum under various mechanics.
Study of oscillations under a bifilar suspension.
Potential energy curves of a I-Double system and oscillation in it for various amplitudes.
Study of oscillations of a mass under different combination of springs.

3.1.3 Properties of Matter
Study of bending of a cantilever or a beam.
Study of torsion of a wire (static and dynamic methods)
Study of flow of liquids through capillaries.
Determination of surface tension of a liquid by different methods.
Study of viscosity of a fluid by different methods.

3.2.1 Electricity, Magnetism and Electromagnetic Theory 3.2.1 Electrostatics
2. Setting up and using an electroscope or electrometer.

3.2.2 Moving Charges and Magnetosciatics
1. Use of a vibration magnetometer to study a field.
2. Study of B field due to current.
3. Measurement of low resistant by Carey-Foster bridge or otherwise.
5. Measurement of capacitance using, impedance at different frequencies.
6. Study of decay of currents in LR and RC circuits.
7. Response curve for LCR circuit and resonance frequency and quality factor.

3.2.3 Varying Fields and Electromagnetic Theory
2. Characteristics of a choke.
4. Study of Lorentz force.
5. Study of discrete and continous LC transmission lines.

3.3 Computer Programming I
1. Elementary FORTRAN programs, flowcharts and their interpretation.
2. To print out all natural even/odd numbers between given limits.
3. To find maximum, minimum and range of a given set of numbers.
4. To compile a frequency distribution and evaluate moments such as mean; standard deviation etc.
5. To evaluate sum of finite series and the area under a curve.
6. To find the product of two matrices.
7. To find a set of prime numbers and Fibonacci series.
8. Motion of a projective using computer simulation.
10. Motion of panicle in a central force field.
11. To find the roots of a quadratic equation.

Text and Reference Books

B Saraetal; “Mechanical System” (Vikas Publishing House, New Delhi)
D.P. Khandelwal; “A Laboratory Manual of Physics for undergraduate Classes” (Vani Publication House, New Delhi)
C.G. Lambe; “Elements of Statistics” (Longmans Green and Co. London, New York, Toronto)
C. Dixon; “Numerical Analysis”
B. Sc. Part I Botany - Paper I

DIVERSITY OF MICROBES AND CRYPTOGAMS

MM : 50

Unit I
Viruses and Bacteria; General account of viruses and mycoplasma; bacteria- structure, nutrition, reproduction and economic importance; general account of cyanabacteria.

Unit II
Algae; General characters, classification and economic importance; important features and life history of Chlorophyceae - Volvox, Oedogonium, Coleochaete; Chara, Xanthophyceae - Vaucheria; Phaeophyceae - Ectocarpus, Sargassum; Rhodophyceae - Polysiphonia.

Unit III
Fungi; General characters, classification and economic importance; important features and life history of Mastigomycotina - Pythium, Phytophthora; Zygomycotina - Mucor, Ascomycotina - Saccharomyces, Aspergillus, Chaetomium, Peziza; Basidiomycotina - Puccunia, Agaricus; Deutermycotina - Cercospora, Colletotrichum; general account of Lichens.

Unit IV
Bryophyta; alternation of generation; structure, reproduction and classification of Hepaticopsida (e.g. marchantia); Anthocerotopsida (e.g. Anthoceros), Bryopsida (e.g. Polytrichrium).

Unit V
Pteridophyta; Important characteristics of Psilopsida, Lycopsida, Sphenopsida and Pteropsida; structure, reproduction in Rhynia, Lycopodium, Selaginella, Equisetum and Marsilea, Stelar Organization.

Suggested Readings

Suggested Laboratory Exercises

1. Study of the genera included under algae and fungi.
2. Study of morphology, reproductive structures and anatomy of the examples cited in theory under Bryophyta and Pteridophyta.
3. Observation of disease symptoms in hosts infected by fungi, viruses and mycoplasma. Section cutting of diseased material and identification of the pathogens as per the theory syllabus.
5. Study of crustose, foliose and other types of lichen thalli.
Unit I

The cell envelops; Plasma membrane; bilayer lipid structure; functions; the cell wall.

Structure and function of other organelles; Golgi, ER, peroxisomes, vacuoles.

Structure and function of nucleus; Ultrastructure; nuclear membrane; nucleolus.

Unit II

Chromosome organization; Morphology; centromere and telomere.
Special types of chromosomes, Mitosis, Meiosis, Extranuclear genome; Presence and function of mitochondria and plastid DNA; Plasmids.

Unit III

Chromosomal alterations’ deletions; duplications; translocations, inversions; variations in chromosome number, aneuploidy, polyploidy, sex chromosomes.

Unit IV

DNA the genetic material; DNA Structure; replication; DNA-protein interaction; the nucleosome model; genetic code; satellite and repetitive DNA. Gene expression; Structure of gene; transfer of genetic information; transcription; translation, protein synthesis; tRNA; ribosomes; regulation of gene expression in prokaryotes and eukaryotes; proteins, 1D, 2D and 3D Structure.

Unit V

Genetic inheritance; Mendelism; Laws of segregation and independent assortment; linkage analysis; allelic and non-allelic interactions.
Genetic variations; Mutations, spontaneous and induced; transposable genetic elements; DNA damage and repair.

Teachers should cover historical aspects and the basic experiments that led to major discoveries.

Suggested Readings

Suggested Laboratory Exercise

1. To study cell structure from onion leaf peels; demonstration of staining and mounting methods.
2. Comparative study of cell structure in onion cells, Hydrilla and Spirogya. Study of cyclosis in Tradescantia staminal cells.
3. Study of plastids to examine pigment distribution in plants (e.g. Cassia, Lycopersicon and Capsicum).
4. Examination electron micrographs of eukaryotic cells with special reference to organelles.
5. Study of electron micrographs of viruses, bacteria, cyanobacteria and eukaryotic cells for comparative cellular organization.
6. Examination of various stages of mitosis and meiosis using appropriate plant material (e.g. onion root tips, onion flower buds).
7. Preparation of karyotypes from dividing root tip cells and pollen grains.
8. Cytological examination of special types of chromosomes; bar body, lambrush and polyten chromosomes.
9. Working out the laws of inheritance using seed mixtures.
10. Working out the mode of inheritance of linked genes from test cross and/or F2 data.

Suggested Readings (for Laboratory Exercise)

B. Sc. Part I

SCHEME OF PRACTICAL EXAMINATION

Time: 4 Hours; MM: 50

Algae/Fungi - 05
Bryophyta - 05
Pteridophyta - 05
Mitosis/Meiosis - 05
Genetical Problem - 05
Plant Diseases - 05
Spotting - 05
Project - 05
Record - 05

50

The Project may include any of the following:

1. An innovation such as a graft hybrid.
2. Collection of plant materials for class use.
4. Preparation of models and museum specimens of plants and plant parts.
5. Preparation of photographs or line diagrams of plants in situ or from preserved specimens.
6. Mushroom culture & Techniques of Bonsai plants.

SCHEME OF PRACTICAL EXAMINATION

B. Sc. First Year

ZOOOLOGY

Time: 4 Hours; MM: 50

Major Dissection - 08
Minor Dissection - 04
Mounting - 04
Spotting - (08 Spots) - 16
(4 Slides, 2 Bones and 2 Museum Specimens)
Cytology - 04
Embryology - 04
Viva - 05
Field Work Report and Practical - 05
Record
LIFE AND DIVERSITY OF ANIMALS

Functional morphology of the types included, with special emphasis on the adaptations to their modes of life and environment. General characters and classification of all phyla upto orders with examples emphasizing their biodiversity, economic importance and conservation measures where required.

Unit - I
1. Classification of Non-chordates upto orders according to Parker and Haswell. 7th Edition.
2. Protozoa - Types study of Plasmodium.
3. Porifera - Types study of Sycon.
4. Coelenterata - Type study of Obelia.
5. Helminths - Type study of Liverfluke.

Unit - II
1. Annelida - Type study of Nereis, metamerism, Trochophore larva.
2. Arthropoda - Type study of Prawn.
3. Mollusca - Type study of Pila.
4. Echinodermata - External features of Star fish and Echinoderm Larvac.

Unit - III
3. Urochordata - Type study of Herdmania (Excluding Development).

Unit - IV
1. Agnatha - (a) Petromyzon - External Features. (b) Comparison between Petromyzon and Myxine.
2. Comparative Anatomy of following systems of vertebrates (Fish, Amphibia, Reptiles, Birds and Mammals).
 (a) Integumentary System
 (b) Skeletal System - Girdles Only
 (c) Digestive System.

Unit - V
Comparative anatomy of the following systems of vertebrates (Fish, Amphibia, Reptiles, Birds and Mammals).
(a) Respiratory System.
(b) Circulatory System - Heart and Aortic arches only.
(c) Nervous System - Brain Only.
(d) Urinogenital System.
B. Sc. First Year
ZOOLOGY
Paper- II
CELL AND DEVELOPMENTAL BIOLOGY

Unit - I
3. Organisation of Cell - Nuclear and Extra Nuclear.

Unit - II
2. Elementary idea of Cell Transformation and Cancer

Unit - III
1. Historical Perspective, aims and scope of Development Biology.
2. Parthenogenesis.
3. Gametogenesis.
4. Fertilization.
5. Types and Patterns of Cleavage.

Unit - IV
1. Process of Blastulation and Fate map Construction in Frog and Chick.
3. Concept of Competence, Determination and Differentiation.

Unit - V
1. Extraembryonic Membranes in Chick.
2. Placentation in Mammals.
3. Retrogressive Metamorphosis in Herdmania.
4. Concept of Regeneration.
5. Basic Concept of Biotechnology and Biodiversity.
LIST OF RECOMMENDED BOOKS
(All Latest Editions)

1. Parker and Haswell, Text Book of Zoology, Vol I (Invertebrate) 7th Edition
 A.Z.T.B.S. Publishers and Distributors, New Delhi 110051.
2. Parker and Haswell, Text Book of Text Book of Zoology, Vol II (Chordata)
 A.Z.T.B.S. Publishers and Distributors, New Delhi 110051.
 Mosby College Publications, St. Louis.
6. Jordan, E.L. and P.S. Verma, Invertebrate Zoology, S. Chand & Co. Ltd., Ram Nagar,
 New Delhi.
 Physiology, S. Chand & Co. Ltd., Ram Nagar, New Delhi.
 York.
11. प्राणी विज्ञान भाग — 1, प्रकाश अनंत, म.प. हिन्दी ग्रंथ अकादेमी, रक्षितनाथ टैगोर मार्ग, भोपाल
 म.प.
12. Introduction to Cytology - Veerbala Rastogi.
15. Chordate Embryology - Dallela.
18. Developmental Biology - Veerbala Rastogi
The Practical work will be based on Theory Syllabus and The Candidates will be required to show a knowledge of the following:-

1. Study of Museum Specimens and Slides relevant to the types studied in theory.

2. Major Dissection :-
 (a) Cockroach : Digestive System, Nervous System.
 (b) Prawn : Nervous System.
 (c) Pila : Nervous System.
 (d) Teleost Fish : Nervous System.

3. Minor Dissection :-
 (a) Hastate plate and Appendages of Prawn.
 (b) Salivary Glands of Cockroach.
 (c) Redula of Pila.

4. Mounting (Temporary) :-
 (a) Mouth part of Insect.
 (b) Statocyst of Prawn.
 (c) Ctenidium and Osphradium of Pila.
 (d) Scales of Teleostean Fish.
 (e) Mounting Material.

5. Osteology :-
 (a) Girdles : Frog, Varanus, Fowl and Rabbit.
 (b) Skull : Rabbit and Dog.

7. Cytology :-
 (a) Study of DNA and RNA Models.
 (b) Preparation of Polytene Chromosomes in Chironomous Larva.
 (c) Squash preparation of Chromosomes from Onion Root tip.
 (d) Study of Meiosis in Grasshopper testis.

8. Embryology :-
 Study of Different Development Stages of Frog and Chickwhole Mounts and Sections.

10. Practical Record.
Unit - I
Number system and Information Codes :- Binary, Octal & Hexadecimal number systems, Conversion from one system to another.

Unit - II
Boolean algebra and gate network :- Fundamental concepts of Boolean algebra, Logical addition and logical multiplication on gates and OR gates, Complementation and inverters, evaluation on logical expressions, basic laws of Boolean, algebra, De-Morgan’s theorem, the principle of duality inter connecting gates, NAND gates and NOR gates, Design using NAND to AND and NOR to OR gate networks.

Unit - III
Logical design I :- Flip-Flops, Transfer circuits, Clocks, Gated flip-flop, Master slave flip-flop, JK flip-flop, Shift register, binary counter, BCD counter, Ripple counter.

Unit - IV
The memory element :- Primary Storages, Storage locations and addresses storage capacity, RAM (Random access memory), Linear select memory organisation, Decoders, ROM (Read only memory), PROM, EPROM, Cache memory, Registers.
Secondary storage devices :- Sequential and Direct access devices -Punched paper tape, Magnetic Tape, Cartidges, Magnetic disk.

Unit - V
Logic design II :- Construction of ALU, Interger representation, Binary Half, Adder, Full adder, addition in the 1’s complement and 2’s complements systems. Full adder design, Addition and Subtraction in the 9’s complements system.

Books Recommended :-
3. Malvino & Brown - Digital Computer Electronics (TMN)
INTRODUCTION TO PROGRAMMING AND PROBLEMSOLVING IN “C”

Unit - I
Introduction to high level language, flowcharts, Importance of C, Basic structure of C Program, Characters, keywords, identifiers, Constants, Variables, Datatypes, Declaration of Variables.

Unit - II
Operators :- Arithmetic, Relational, Logical, Assignment, Increment, Decrement, Conditional, Special Operators, Precedence of Operators, Expression, Reading & Writing a characters, Input/ Output format, Assignment, If, Nested If, Switch, Else If, Ladder, Operator, Goto, While, Do, For Statements.

Unit - III
Array :- One & Two dimensional arrays, Declaring and Initialising string variables, Reading and writing strings from screen, Arithmetic Operations on string.

Unit - IV
The “C” functions, General forms, Function argument, Return statement, Returning values, Calling function, No argument, Argument but no return value, Argument with return values.

Unit - V
Structure initialisation, Array of structure, Unions, Understanding pointers, Declaring and initialising pointers, Defining and opening a file, input/output Operations on Files, Closing a files.

Books Recommended :-
2. Programming in “C” (Gottfried).
3. Let us C (Yaswant Kaneticar).