

INSTITUTE OF DISTANCE EDUCATION JIWAJI UNIVERSITY

Gwalior, MP

PGDCA102 COMPUTER ORGANIZATION & ARCHITECTURE

COMPUTER ORGANIZATION & ARCHITECTURE

PGDCA102

SCHOOL OF STUDIES IN DISTANCE EDUCATION JIWAJI UNIVERSITY

> Gwalior, MP INDIA

Syllabus

Computer Organization & Architecture

Chapter 1	Basic Concepts —
	Introduction
	What is a Computer?
	Characteristics of Computer
	History of Computer
	Calculating Machines
	Computer Generations
	Types of Computers
	Functional Units
Chapter 2	Introduction to Logic Circuits and Digital Components —
	Introduction
	Boolean Algebra
	Functional Completeness
	Implementing Boolean Functions
	Karnaugh Map
	• Switches
	Logic Gates
	• What is State?
	Difference between Combinational and Sequential Logic
	Sequential Circuits
	• Introduction to Flip Flops: D and T
	• Excitation Tables for D and T Flip-Flops
	Equivalence of T and D Flip Flops
	Black Boxes
	Multiplexers and Demultiplexers
	Encoders/Decoders
	Parallel Load Register
	Asynchronous Counters

	Half Adders, Full Adders, Ripple Carry Adders
	MUX Trick: Implementing Truth Tables
	ROM Trick: Implementing Truth Tables with Multiple Outputs
	Overflow Detection for Adders
	Fast Addition: Carry Lookahead Adders
	The Arithmetic and Logic Unit
Chapter 3	Data Representation—
_	Introduction
	Unsigned Integers
	Decimal Numbers
	Introduction to Binary
	• Hexadecimal (Base 16)
	Representing Signed Integers
	Two's Complement Addition
	Two's Complement Subtraction
	Two's Complement Multiplication and Division
	Booth's Algorithm
	Representing Characters and Strings
	Representing Values with Fractions
	Floating Point
	Converting Normalized from Base 10 to IEEE 754
	Converting Denormalized from Base 10 to IEEE 754
	Creating a One Byte Floating Point Number
	Adding Floating Point Numbers
	Multiplying Floating Point Numbers
Chapter 4	Computer Functions and Interconnections
	Introduction
	The von Neumann Machine
	• Memory
	 Arithmetic/Logic Unit (ALU)
	Control
	Input and Output (I/O)
	 Micro-operation
	±

Chapter 5	Control Unit
	Introduction
	Micro-operations
	Control of the CPU
	Control Signals
	The Basic Computer
	The Computer's Instruction Set
	The Hard-Wired Control Unit
	A Micro-programmed Control Unit
	Hardwired vs. Micro-programmed Computers
Chapter 6	Central Processing Unit (CPU)
	Introduction
	Processor Components
	CPU Organisation
	Types of CPU Organizations
	Bus organization for fifteen CPU registers
	Stack Organization
	Addressing Mode
	Data Transfer and Manipulation
	Program Interrupts
	Rise & Cise Architecture
	The CISC Approach
	The RISC Approach
	RISC Roadblocks
	The Overall RISC Advantage
	CISC and RISC Convergence
Chapter 7	Memory
	Introduction
	Basic Memory Operations
	Memory Organisation
	Memory Hierarchy
	Memory as a Large Array (1-D Memory)
	Interleaved Memory
	Memory Map and Addresses
	Introduction to Caches
	Memory Management Unit

Chapter 8	Input-Output Organisation	
	Introduction	
	Input Devices	
	Output Devices	
	Input/Output Interfaces	
	Memory Mapped I/O and I/O Mapped I/O (Isolated)	
	External Interrupts	
	Blocking Interrupts	
	Software Interrupts	
	Modes of transfer	
	I/O Control Strategies	
	Bus Arbitration	
	The I/O Address Space	
	Introduction to Serial Communication	
Chapter 9	Advance Architectures	
	Introduction	
	Exploiting Parallelism at the Instruction Level	
	Thread Level Parallelism: Multi-Core Processors	
	Pipelining not Just Multiprocessing	
	Pipelining MIPS	
	Decoding and Fetching Together	
	Executing, Decoding and Fatching	
	A Pipeline Diagram	
	Pipeline Terminology	
	Pipelining Performance	
	Pipeline Datapath: Resource Requirements	

Contents

Char	pter 1: Basic Concepts	1-12
1.1	Introduction	1
1.2	What is a Computer?	1
1.3	Characteristics of Computer	2
1.4	History of Computer	4
1.5	Calculating Machines	4
	1.5.1 Pascal's Adding and Subtractory Machine	4
	1.5.2 Leibniz's Multiplication and Dividing Machine	5
	1.5.3 Babbage's Analytical Engine	5
	1.5.4 Mechanical and Electrical Calculator	6
	1.5.5 Modern Electronic Calculator	6
1.6	Computer Generations	6
	1.6.1 First Generation Computers	7
	1.6.2 Second Generation Computers	7
	1.6.3 Third Generation Computers	
	1.6.4 Fourth Generation Computers	
	1.6.5 Fifth Generation Computer	
1.7	Types of Computers	8
1.8	Functional Units	10
	1.8.1 Arithmetic Logical Unit (ALU)	10
	1.8.2 Control Unit (CU)	10
	1.8.3 Central Processing Unit (CPU)	11
Char	pter 2: Introduction to Logic Circuits and Digital Components	13-102
2.1	Introduction	13
	2.1.1 Boolean Functions	
	2.1.2 Truth Tables	15
	2.1.3 Number of Boolean Functions	16
	2.1.4 Summary	16
2.2	Boolean Algebra	17
2.3	Functional Completeness	19
2.4	Implementing Boolean Functions	21
	2.4.1 Implementing a Specific Kind of Truth Table	22
	2.4.2 Constructing Minterms.	23
	2.4.3 Constructing Boolean Expressions for Arbitrary Truth Tables	23
2.5	Karnaugh Map	26
	2.5.1 Karnaugh Maps–Rules of Simplification	27
2.6	Switches	34

2.7	Logic Gates	36
	2.7.1 NOT Gates	
	2.7.2 AND, Gates	
	2.7.3 OR, Gates	37
	2.7.4 NAND ₂ Gates	37
	2.7.5 NOR, Gates	38
	2.7.6 XOR, Gates	39
	2.7.7 XNOR, Gates	40
	2.7.8 Summary	41
2.8	What is State?	43
2.9	Difference between Combinational and Sequential Logic	43
2.10	Sequential Circuits	44
2.11	Introduction to Flip Flops: D and T	46
2.12	Excitation Tables for D and T Flip-Flops	50
	2.12.1 T Flip-Flop Excitation Table	51
2.13	Equivalence of T and D Flip Flops	52
2.14	Black Boxes	56
	2.14.1 Conventions	57
2.15	Multiplexers and Demultiplexers	58
	2.15.1 Multiplexers	58
	2.15.2 Demultiplexers	63
2.16	Encoders/Decoders	65
	2.16.1 Decoders	65
	2.16.2 Decoder or DeMux	66
	2.16.3 Encoder	67
2.17	Parallel Load Register	70
2.18	Asynchronous Counters	77
	2.18.1 Hardwiring a 1 to a T flip flop	77
2.19	Half Adders, Full Adders, Ripple Carry Adders	82
	2.19.1 Building Blocks: Half Adders	84
	2.19.2 Building Blocks: Full Adders	85
2.20	MUX Trick: Implementing Truth Tables	89
2.21	ROM Trick: Implementing Truth Tables with Multiple Outputs	90
2.22	Overflow Detection for Adders	92
	2.22.1 Overflow in UB Addition	92
	2.22.2 Overflow in 2C Addition	
	2.22.3 A Simpler Formula for Overflow	94
	2.22.4 Misconceptions about Overflow	95

Detailed	Contents

2.23	Fast Addition: Carry Lookahead Adders	95
2.24	The Arithmetic and Logic Unit	99
	2.24.1 How to Create a 1-bit ALU	99
	2.24.2 Operations for an ALU	100
Chapt	er 3: Data Representation	103-154
3.1	Introduction	103
3.2	Unsigned Integers	104
3.3	Decimal Numbers	104
3.4	Introduction to Binary	105
	3.4.1 Decimal to Binary Conversion (Division)	107
	3.4.2 Decimal to Binary Conversion (Subtraction)	107
	3.4.3 Binary to Octal (Base 8) Conversion	108
3.5	Hexadecimal (Base 16)	108
3.6	Representing Signed Integers	110
	3.6.1 Representing Integers II - One's Complement (historical)	112
	3.6.2 Representing Integers III - Two's Complement	113
	3.6.3 Representing Integers IV - Excess-n or Bias-n	116
	3.6.4 Representing Integers V - Binary Coded Decimal (BCD)	117
3.7	Two's Complement Addition	121
3.8	Two's Complement Subtraction	122
3.9	Two's Complement Multiplication and Division	122
3.10	Booth's Algorithm	128
3.11	Representing Characters and Strings	131
3.12	Representing Values with Fractions	133
3.13	Floating Point	136
	3.13.1 Scientific Notation	137
	3.13.2 Canonical Representation	138
3.14	Converting Normalized from Base 10 to IEEE 754	142
3.15	Converting Denormalized from Base 10 to IEEE 754	143
3.16	Creating a One Byte Floating Point Number	145
3.17	Adding Floating Point Numbers	146
3.18	Multiplying Floating Point Numbers	149
Chapter 4: Computer Functions and Interconnections		155-188
4.1	Introduction	155
4.2	The von Neumann Machine	155
4.3	Memory	156
4.4	Arithmetic/Logic Unit (ALU)	157
4.5	Control	158
		ix

Comp	outer Organization & Architecture	
4.6 4.7	Input and Output (I/O) Micro-operation 4.7.1 Register Transfer 4.7.2 Arithmetic Microoperations 4.7.3 Logic Microoperations 4.7.4 Shift Microoperations	160 161 162 169 172 175
Chap	ter 5: Control Unit	189-212
5.1	Introduction	189
5.2	Micro-operations	190
	5.2.1 The Fetch Cycle	191
	5.2.2 The Indirect Cycle	192
	5.2.3 The Interrupt Cycle	193
	5.2.4 The Execute Cycle	193
	5.2.5 The Instruction Cycle	194
5.3	Control of the CPU	196
	5.3.1 Functional Requirements	196
5.4	Control Signals	197
5.5	The Basic Computer	200
5.6	The Computer's Instruction Set	201
5.7	The Hard-Wired Control Unit	202
5.8	A Micro-programmed Control Unit	206
5.9	Hardwired vs. Micro-programmed Computers	211
Chap	ter 6: Central Processing Unit (CPU)	213-268
6.1	Introduction	213
6.2	Processor Components	214
	6.2.1 The Fetch-Execute Cycle	216
6.3	CPU Organisation	219
6.4	Types of CPU Organizations	223
	6.4.1 Single Accumulator Organization	224
	6.4.2 General Register Organization	224
6.5	Bus organization for fifteen CPU registers	228
6.7	Stack Organization	232
6.8	Addressing Mode	240
	6.8.1 Types of Addressing	240
6.9	Data Transfer and Manipulation	247
	6.9.1 Data Transfer Instructions	247
	6.9.2 Data Manipulation Instructions	248

X

		Detailed Contents
6.10	Program Interrupts	251
	6.10.1 Interrupt cycle	252
	6.10.2 Interrupt types	253
6.11	Rise & Cise Architecture	253
	6.11.1 RISC?	253
	6.11.2 History	253
	6.11.3 RISC Pipelines	254
6.12	The CISC Approach	257
6.13	The RISC Approach	258
6.14	RISC Roadblocks	259
6.15	The Overall RISC Advantage	259
6.16	CISC and RISC Convergence	260
Chap	ter 7: Memory	269-330
7.1	Introduction	269
7.2	Basic Memory Operations	270
7.3	Memory Organisation	272
7.4	Memory Hierarchy	272
	7.4.1 Auxiliary Memory	273
	7.4.2 Main Memory (RAM)	278
	7.4.3 Cache Memory	280
	7.4.4 Register Memory	280
7.5	Memory as a Large Array (1-D Memory)	281
	7.5.1 2-D Memory	282
	7.5.2 Main Memory Organisation	282
	7.5.3 3D Memory Organisation	286
	7.5.4 D Memory (2.5 D Memory)	287
7.6	Interleaved Memory	288
7.7	Memory Map and Addresses	297
7.8	Introduction to Caches	300
	7.8.1 Intuitive Example of Caching	301
	7.8.2 An Improved Analogy	302
	7.8.3 Other Forms of Caching	303
	7.8.4 Categories of Cache Misses	306
	7.8.5 Fully Associative Cache	308
	7.8.6 Direct Mapped Cache	310
	7.8.7 Set Associative Cache	312
7.9	Memory Management Unit	314
	7.9.1 Virtual Memory	316
	7.9.2 Memory Protection	321
		xi

Chapte	er 8: Input-Output Organisation	331-360
8.1	Introduction	331
8.2	Input Devices	331
8.3	Output Devices	332
8.4	Input/Output Interfaces	334
8.5	Memory Mapped I/O and I/O Mapped I/O (Isolated)	337
	8.5.1 Memory Mapped I/O	337
	8.5.2 I/O Mapped I/O (Isolated)	338
8.6	External Interrupts	340
8.7	Blocking Interrupts	342
8.8	Software Interrupts	342
8.9	Modes of transfer	342
8.10	I/O Control Strategies	344
	8.10.1 Program-controlled I/O	344
	8.10.2 Interrupt-controlled I/O	346
	8.10.3 Direct Memory Access (DMA)	347
8.11	Bus Arbitration	348
8.12	The I/O Address Space	349
8.13	Introduction to Serial Communication	353
	8.13.1 Teletype Systems	353
	8.13.2 Serial Buses	353
	8.13.3 Serial Versus Parallel	353
Chapt	er 9: Advance Architectures	361-376
9.1	Introduction	361
9.2	Exploiting Parallelism at the Instruction Level	361
	9.2.1 Exploiting Parallelism	362
9.3	Thread Level Parallelism: Multi-Core Processors	365
	9.3.1 Programming Explicit Thread-Level Parallelism	366
	9.3.2 Why Multi-Cores Now?	367
9.4	Pipelining not Just Multiprocessing	367
9.5	Pipelining MIPS	368
9.6	Decoding and Fetching Together	371
9.7	Executing, Decoding and Fatching	372
9.8	A Pipeline Diagram	373
9.9	Pipeline Terminology	374
9.10	Pipelining Performance	374
9.11	Pipeline Datapath: Resource Requirements	375
Lab Manual		377-404
Multiple Choice Questions		405-436
Index		437-439

BASIC CONCEPTS

Learning Objectives

- > Introduction to Computers
- > Brief History of Computers
- > Computer Generations
- > Types of Computers
- ➢ Basic Operations of a Computer

1.1 INTRODUCTION

Let us begin with the word 'compute'. It means 'to calculate'. We all are familiar with calculations in our day-to-day life. We apply mathematical operations like addition, subtraction, multiplication, etc. and many other formulae for calculations. Simpler calculations take less time. But complex calculations take much longer time. Another factor is accuracy in calculations. So man explored with the idea to develop a machine which can perform this type of arithmetic calculation faster and with full accuracy. This gave birth to a device or machine called 'computer'.

The computer we see today is quite different from the one made in the beginning. The number of applications of a computer has increased, the speed and accuracy of calculation has increased. You must appreciate the impact of computers in our day-to-day life. Reservation of tickets in Air Lines and Railways, payment of telephone and electricity bills, deposits and withdrawals of money from banks, business data processing, medical diagnosis, weather forecasting, etc. are some of the areas where computer has become extremely useful.

However, there is one limitation of the computer. Human beings do calculations on their own. But computer is a dumb machine and it has to be given proper instructions to carry out its calculation. This is why we should know how a computer works.

1.2 WHAT IS A COMPUTER?

Computer is an electronic device. As mentioned in the introduction it can do arithmetic calculations faster. But as you will see later it does much more than that. It can be compared to a magic box, which serves different purpose to different people. For a common man computer is simply a calculator, which works automatic and quite fast. For a person who knows much about it, computer is a machine capable of solving problems and manipulating data. It accepts data, processes the data by doing some mathematical and logical operations and gives us the desired output.

Therefore, we may define *computer as a device that transforms data*. Data can be anything like marks obtained by you in various subjects. It can also be name, age, sex, weight, height, etc. of all the students

in your class or income, savings, investments, etc., of a country. Computer can be defined in terms of its functions: It can (i) accept data (ii) store data, (iii) process data as desired, and iv) retrieve the stored data as and when required and v) print the result in desired format. You will know more about these functions as you go through the later lessons.

Figure 1.1 shows personal computer.

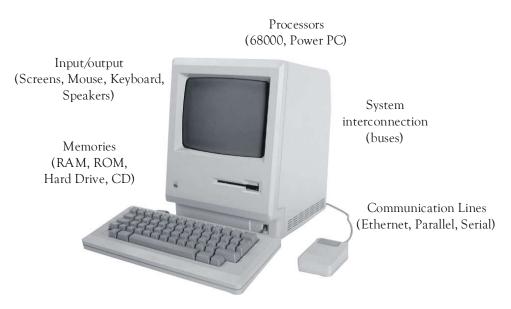


Figure 1.1 Personal Computer

1.3 CHARACTERISTICS OF COMPUTER

Let us identify the major characteristics of computer. A computer can be judged by various factors, some of them are:

Speed

As we know computer can work very fast. It takes only few seconds for calculations that we take hours to complete. Suppose you are asked to calculate the average monthly income of one thousand persons in your neighborhood. For this you have to add income from all sources for all persons on a day-to-day basis and find out the average for each one of them. *How long will it take for you to do this*? One day, two days or one week? *Do you know your small computer can finish this work in few seconds*? The weather forecasting that you see every day on TV is the results of compilation and analysis of huge amount of data on temperature, humidity, pressure, etc. of various places on computers. It takes few minutes for the computer to process this huge amount of data and give the result.

We will be surprised to know that computer can perform millions (1,000,000) of instructions and even more per second. Therefore, we determine the speed of computer in terms of microsecond (10⁻⁶ part of a second) or nano-second (10⁻⁹ part of a second). From this you can imagine how fast your computer performs work.

Accuracy

Suppose some one calculates faster but commits a lot of errors in computing. Such result is useless. There is another aspect. Suppose you want to divide 15 by 7. You may work out up to 2 decimal places and say the dividend is 2.14. I may calculate up to 4 decimal places and say that the result is 2.1428. Some one else may go up to 9 decimal places and say the result is 2.142857143. Hence, in addition to speed, the computer should have accuracy or correctness in computing.

The degree of accuracy of computer is very high and every calculation is performed with the same accuracy. The accuracy level is determined on the basis of design of computer. The errors in computer are due to human and inaccurate data.

Diligence

A computer is free from tiredness, lack of concentration, fatigue, etc. It can work for hours without creating any error. If millions of calculations are to be performed, a computer will perform every calculation with the same accuracy. Due to this capability it overpowers human being in routine type of work.

Versatility

It means the capacity to perform completely different type of work. You may use your computer to prepare payroll slips. Next moment you may use it for inventory management or to prepare electric bills.

Power of Remembering

Computer has the power of storing any amount of information or data. Any information can be stored and recalled as long as you require it, for any numbers of years. It depends entirely upon you how much data you want to store in a computer and when to lose or retrieve these data.

No IQ

Computer is a dumb machine and it cannot do any work without instruction from the user. It performs the instructions at tremendous speed and with accuracy. It is you to decide what you want to do and in what sequence. So a computer cannot take its own decision as you can.

Storage

The Computer has an in-built memory where it can store a large amount of data. You can also store data in secondary storage devices such as floppies, which can be kept outside your computer and can be carried to other computers.

1.4 HISTORY OF COMPUTER

History of computer could be traced back to the effort of man to count large numbers. This process of counting of large numbers generated various systems of numeration like Babylonian system of numeration, Greek system of numeration, Roman system of numeration and Indian system of numeration. Out of these the Indian system of numeration has been accepted universally. It is the basis of modern decimal system of numeration (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Later you will know how the computer solves all calculations based on decimal system. But you will be surprised to know that the computer does not understand the decimal system and uses binary system of numeration for processing.

We will briefly discuss some of the path-breaking inventions in the field of computing devices.

1.5 CALCULATING MACHINES

It took over generations for early man to build mechanical devices for counting large numbers. The first calculating device called ABACUS was developed by the Egyptian and Chinese people.

The word ABACUS means calculating board. It consists of sticks in horizontal positions on which were inserted sets of pebbles. A modern form of ABACUS is given in Figure 1.2. It has a number of horizontal bars each having ten beads. Horizontal bars represent units, tens, hundreds, etc.

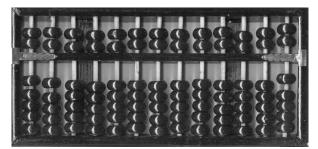


Figure 1.2 Abacus Computer

Napier's bones

English mathematician John Napier built a mechanical device for the purpose of multiplication in 1617 A D. The device was known as Napier's bones.

Slide Rule

English mathematician Edmund Gunter developed the slide rule. This machine could perform operations like addition, subtraction, multiplication, and division. It was widely used in Europe in 16th century.

1.5.1 Pascal's Adding and Subtractory Machine

You might have heard the name of Blaise Pascal. He developed a machine at the age of 19 that could add and subtract. The machine consists of wheels, gears and cylinders (shown in figure 1.3).

1.5.2 Leibniz's Multiplication and Dividing Machine

The German philosopher and mathematician Gottfried Leibniz built around 1673 a mechanical device that could both multiply and divide.

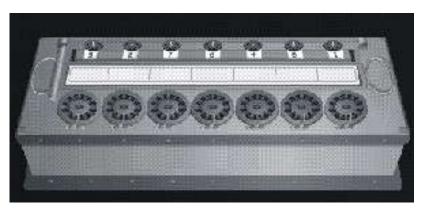


Figure 1.3 Leibniz's Machine

1.5.3 Babbage's Analytical Engine

It was in the year 1823 that a famous English man Charles Babbage built a mechanical machine to do complex mathematical calculations. It was called *difference engine*. Later he developed a general-purpose calculating machine called *analytical engine*. He is known as the *father of computer*.

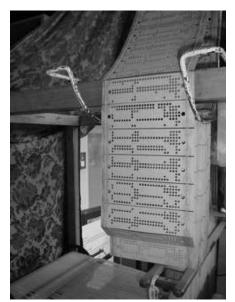


Figure 1.4 Babbage's machine

1.5.4 Mechanical and Electrical Calculator

In the beginning of 19th century the mechanical calculator was developed to perform all sorts of mathematical calculations. Up to the 1960s it was widely used. Later the rotating part of mechanical calculator was replaced by electric motor. So it was called the electrical calculator.

1.5.5 Modern Electronic Calculator

The electronic calculator used in 1960s was run with electron tubes, which was quite bulky. Later it was replaced with *transistors* and as a result the size of calculators became too small.

The modern electronic calculator can compute all kinds of mathematical computations and mathematical functions. It can also be used to store some data permanently. Some calculators have inbuilt programs to perform some complicated calculations.

Figure 1.5 Vacuum tube, transistor, IC

1.6 COMPUTER GENERATIONS

You know that the evolution of computer started from 16th century and resulted in the form that we see today. The present day computer, however, has also undergone rapid change during the last fifty years. This period, during which the evolution of computer took place, can be divided into five distinct phases known as *Generations of Computers*. Each phase is distinguished from others on the basis of the type of *switching circuits* used.

1.6.1 First Generation Computers

First generation computers used *Thermion valves*. These computers were large in size and writing programs on them was difficult. Some of the computers of this generation were:

ENIAC: It was the first electronic computer built in 1946 at University of Pennsylvania, USA by John Eckert and John Mauchy. It was named Electronic Numerical Integrator and Calculator (ENIAC). The ENIAC was 30-50 feet long, weighed 30 tons, contained 18,000 vacuum tubes, 70,000 registers, 10,000 capacitors and required 150,000 watts of electricity. Today your favorite computer is many times as powerful as ENIAC, still size is very small.

EDVAC: It stands for Electronic Discrete Variable Automatic Computer and was developed in 1950. The concept of storing data and instructions inside the computer was introduced here. This allowed much faster operation since the computer had rapid access to both data and instructions. The other advantages of storing instruction was that computer could do logical decision internally.

Other Important Computers of First Generation

EDSAC: It stands for Electronic Delay Storage Automatic Computer and was developed by M.V. Wilkes at Cambridge University in 1949.

UNIVAC-1: Ecker and Mauchly produced it in 1951 by Universal Accounting Computer setup.

Limitations of First Generation Computer

Followings are the major drawbacks of First generation computers:

- 1. The operating speed was quite slow.
- 2. Power consumption was very high.
- 3. It required large space for installation.
- 4. The programming capability was quite low.

1.6.2 Second Generation Computers

Around 1955 a device called *Transistor* replaced the bulky electric tubes in the first generation computer. Transistors are smaller than electric tubes and have higher operating speed. They have no filament and require no heating. Manufacturing cost was also very low. Thus, the size of the computer got reduced considerably.

It is in the second generation that the concept of Central Processing Unit (CPU), memory, programming language and input and output units were developed. The programming languages such as COBOL, FORTRAN were developed during this period. Some of the computers of the Second Generation were:

- 1. IBM 1620: Its size was smaller as compared to First Generation computers and mostly used for scientific purpose.
- 2. IBM 1401: Its size was small to medium and used for business applications.
- 3. CDC 3600: Its size was large and is used for scientific purposes.

1.6.3 Third Generation Computers

The third generation computers were introduced in 1964. They used *Integrated Circuits* (ICs). These ICs are popularly known as *Chips*. A single IC has many transistors, registers and capacitors built on a single thin slice of silicon. So it is quite obvious that the size of the computer got further reduced. Some of the computers developed during this period were IBM-360, ICL-1900, IBM-370, and VAX-750. Higher level language such as BASIC (Beginners All purpose Symbolic Instruction Code) was developed during this period.

Computers of this generations were small in size, low cost, large memory and processing speed is very high.

1.6.4 Fourth Generation Computers

The present day computers that you see today are the fourth generation computers that started around 1975. It uses *large scale Integrated Circuits* (LSIC) built on a single silicon chip called microprocessors. Due to the development of microprocessor it is possible to place computer's *central processing unit* (CPU) on single chip. These computers are called microcomputers. Later *very large scale Integrated Circuits* (VLSIC) replaced LSICs.

Thus, the computer which was occupying a very large room in earlier days can now be placed on a table. The personal computer (PC) that you see in your school is a Fourth Generation Computer.

1.6.5 Fifth Generation Computer

The computers of 1990s are said to be Fifth Generation computers. The speed is extremely high in fifth generation computer. Apart from this it can perform *parallel processing*. The concept of *Artificial intelligence* has been introduced to allow the computer to take its own decision. It is still in a developmental stage.

1.7 TYPES OF COMPUTERS

Now let us discuss the varieties of computers that we see today. Although they belong to the fifth generation they can be divided into different categories depending upon the size, efficiency, memory and number of users. Broadly they can be divided it to the following categories:

- 1. Microcomputer: Microcomputer is at the lowest end of the computer range in terms of speed and storage capacity. Its CPU is a microprocessor. The first microcomputers were built of 8bit microprocessor chips. The most common application of personal computers (PC) is in this category. The PC supports a number of input and output devices. An improvement of 8bit chip is 16-bit and 32-bit chips. Examples of microcomputer are IBM PC, PC-AT.
- 2. Mini Computer: This is designed to support more than one user at a time. It possesses large storage capacity and operates at a higher speed. The mini computer is used in multi-user system in which various users can work at the same time. This type of computer is generally used for processing large volume of data in an organisation. They are also used as servers in Local Area Networks (LAN).

- **3. Mainframes:** These types of computers are generally 32-bit microprocessors. They operate at very high speed, have very large storage capacity and can handle the work load of many users. They are generally used in centralised databases. They are also used as controlling nodes in Wide Area Networks (WAN). Example of mainframes are DEC, ICL and IBM 3000 series.
- 4. Supercomputer: They are the fastest and most expensive machines. They have high processing speed compared to other computers. They have also multiprocessing technique. One of the ways in which supercomputers are built is by interconnecting hundreds of microprocessors. Supercomputers are mainly being used for whether forecasting, biomedical research, remote sensing, aircraft design and other areas of science and technology. Examples of supercomputers are CRAY YMP, CRAY2, NEC SX-3, CRAY XMP and PARAM from India.

A computer as shown in Figure 1.6 performs basically five major operations or functions irrespective of their size and make. These are:

- 1. it accepts data or instructions by way of input,
- 2. it stores data,
- 3. it can process data as required by the user,
- 4. it gives results in the form of output, and
- 5. it controls all operations inside a computer. We discuss below each of these operations.
- 1. Input: This is the process of entering data and programs into the computer system. You should know that computer is an electronic machine like any other machine which takes as inputs raw data and performs some processing giving out processed data. Therefore, the input unit takes data from us to the computer in an organized manner for processing.

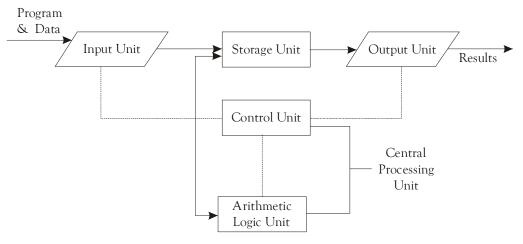


Figure 1.6 Basic computer Operations

2. Storage: The process of saving data and instructions permanently is known as storage. Data has to

be fed into the system before the actual processing starts. It is because the processing speed of Central Processing Unit (CPU) is so fast that the data has to be provided to CPU with the same speed. Therefore, the data is first stored in the storage unit for faster access and processing. This storage unit or the primary storage of the computer system is designed to do the above functionality. It provides space for storing data and instructions.

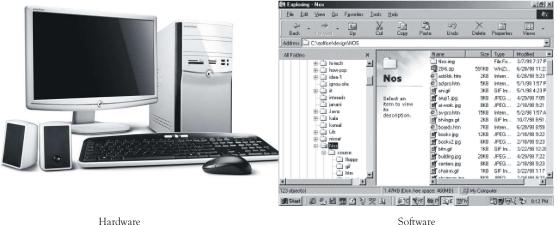
The storage unit performs the following major functions:

- All data and instructions are stored here before and after processing.
- Intermediate results of processing are also stored here.
- **3. Processing:** The task of performing operations like arithmetic and logical operations is called processing. The Central Processing Unit (CPU) takes data and instructions from the storage unit and makes all sorts of calculations based on the instructions given and the type of data provided. It is then sent back to the storage unit.
- 4. **Output:** This is the process of producing results from the data for getting useful information. Similarly the output produced by the computer after processing must also be kept somewhere inside the computer before being given to you in human readable form. Again the output is also stored inside the computer for further processing.
- 5. Control: The manner how instructions are executed and the above operations are performed. Controlling of all operations like input, processing and output are performed by control unit. It takes care of step-by-step processing of all operations in side the computer.

1.8 FUNCTIONAL UNITS

In order to carry out the operations mentioned in the previous section the computer allocates the task between its various functional units. The computer system is divided into three separate units for its operation: 1. arithmetic logical unit, 2. control unit, and 3. central processing unit.

1.8.1 Arithmetic Logical Unit (ALU)


After you enter data through the input device it is stored in the primary storage unit. The actual processing of the data and instruction are performed by Arithmetic Logical Unit. The major operations performed by the ALU are addition, subtraction, multiplication, division, logic and comparison. Data is transferred to ALU from storage unit when required. After processing the output is returned back to storage unit for further processing or getting stored.

1.8.2 Control Unit (CU)

The next component of computer is the Control Unit, which acts like the supervisor seeing that things are done in proper fashion. The control unit determines the sequence in which computer programs and instructions are executed. Things like processing of programs stored in the main memory, interpretation of the instructions and issuing of signals for other units of the computer to execute them. It also acts as a switch board operator when several users access the computer simultaneously. Thereby it coordinates the activities of computer's peripheral equipment as they perform the input and output. Therefore, it is the manager of all operations mentioned in the previous section.

1.8.3 Central Processing Unit (CPU)

The ALU and the CU of a computer system are jointly known as the central processing unit. You may call CPU as the brain of any computer system. It is just like brain that takes all major decisions, makes all sorts of calculations and directs different parts of the computer functions by activating and controlling the operations.

Hardware

Figure 1.7 Computer Architecture

Personal Computer Configuration

Now let us identify the physical components that make the computer work. These are:

- 1. Central Processing Unit (CPU)
- 2. Computer Memory (RAM and ROM)
- 3. Data bus
- 4. Ports
- 5. Motherboard
- Hard disk 6.
- 7. **Output** Devices
- 8. Input Devices

All these components are inter-connected for the personal computer to work.

Computer organization is how operational attributes are linked together and contribute to realize the architectural specifications. Computer architecture is the architectural attributes like physical address memory, CPU and how they should be made and made to coordinate with each other keeping the future demands and goals in mind. Computer architecture comes before computer organisation. It's like building the design and architecture of house takes maximum time and then organisation is building house by bricks or by latest technology keeping the basic layout and architecture of house in mind.

11

Jiwaji University, Gwalior

(Established in 1964) जीवाजी विश्वविद्यालय, ग्वालियर (स्थापना वर्ष 1964) NAAC Accredited 'A' Grade University