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Physical Constants in CGS Units

speed of light c = 3- 1010cm/sec = 1000 ft /(sec = 1 ft
/nanosecond

acceleration due to gravity

at the surface of the earth g =980 cm/sec2 = 32 ft/sec2

gravitational constant G =6.67- 10-8cma/ (gm sec2)
charge on an electron e =4.8- 10-10esu

Planck's constant h =6.62- 10-27erg sec (gm cmz/sec )
Planck constant /2w h = 1.06- 10-27erg sec (gm cmz/ sec)
Bohr radius ao=.529. 10-scm

rest mass of electron me= 0.911-10-27gm

rest mass of proton Mp = 1.67- 10 - 24gm

rest energy of electron  mec?*=0.51MeV (H1/2 MeV)
rest energy of proton Mpc 2=0.938 BeV (H 1 BeV)
proton radius rp=1.0-10- 13cm

Boltzmann's constant k =1.38- 10 - 16ergs/ kelvin
Avogadro's number No = 6.02- 10 2amolecules/mole
absolute zero=0°K =273°C

density of mercury =13.6gm/cms

mass of earth =5.98-10 27gm

mass of the moon =7.35- 10 2sgm

mass of the sun =1.97- 10 33gm

earth radius = 6.3 8- 10 scm = 3960mi

moon radius =1.7 4- 10 scm = 1080mi

mean distance to moon =3.84- 10 10cm

mean distance to sun =1.50- 10 13cm

me an earth velocity in orbit about sun = 29.77 km / sec



UNIT-1

Geometrical Optics

For over 100 years, from the time of Newton and
Huygens in the late 1600s, until 1801 when Thomas
Young demonstrated the wave nature of light with his
two slit experiment, it was not clear whether light
consisted of beams of particles as proposed by Newton,
orwasawave phenomenon as putforward by Huygens.
The reason for the confusion is that almost all common
optical phenomena can be explained by tracing light
rays. The wavelength of light is so short compared to
the size of most objects we are familiar with, that light
rays produce sharp shadows and interference and
diffraction effects are negligible.

incident wave
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Figure 36-1
An incident
wave passing
over a small
object produces
a circular
scattered wave.

Figure 36-2
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To see how wave phenomena can be explained by ray
tracing, consider the reflection of a light wave by a
metal surface. Whenawave strikes avery small object,
an object much smaller than a wavelength, a circular
scattered wave emerges as shown in the ripple tank
photograph of Figure (36-1) reproduced here. But
when a light wave impinges on a metal surface consist-
ing of many small atoms, represented by the line of dots
in Figure (36-2), the circular scattered waves all add
uptoproduce areflectedwave that emerges atan angle
of reflection 8, equal to the angle of incidence 6.
Ratherthansketching the individual crests and troughs
of the incident wave, and adding up all the scattered
waves, it is much easier to treat the light as a ray that
reflected from the surface. This ray is governed by the
law of reflection, namely 6, = 6,

mirror.
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Reflection of light. In the photograph, we see an incoming plane wave scattered by a small object. If the
object is smaller than a wavelength, the scattered waves are circular. When an incoming light wave strikes
an array of atoms in the surface of a metal, the scattered waves add up to produce a reflected wave that
comes out at an angle of reflection 6, equal to the angle of incidence @,.



Optics-2

The subject of geometrical optics is the study of the
behavior of light when the phenomena can be ex-
plained by ray tracing, where shadows are sharp and
interference and diffraction effects can be neglected.
The basic laws for ray tracing are exiremely simple. At
areflecting surface 0. = 6, aswe have just seen. When
a light ray passes between two media of different
indexes of refraction, as in going from air into glass or
airintowater, the rule is ny sin @, = n sin 0, , where
ny and n, are constants called indices of refraction,
and 6; and 6, are the angles that the rays macde with
the line perpendicular io the interface. This is known
as Snell’s law.

This entire chapter is based on the two rules 6.= 6,
and ny sin @, =n, sin 8,. These rules are all thar are
needed to understandthe function of telescopes, micro-
scopes, cameras, fiber optics, and the optical compo-
nents of the human eye. You can understand the
operation of these instruments without knowing any-
thing about Newton’s laws, kinetic and potential en-
ergy, electric or magnetic fields, or the particle and
wave nature of matter. In other words, there is no
prerequisite background needed for studying geo-
metrical optics as long as you accept the two rules
which are easily verified by experiment.

In most introductory texts, geometrical optics appears
after Maxwell’s equations and theory of light. There is
a certain logic to this, first introducing a basic theory
Jor light and then treating geometrical optics as a
practical application of the theory. But this is clearly
not an historical approach since geomeltrical optics
was developed centuries before Maxwell’s theory. Nor
is it the only logical approach, because studying lens
systems teaches you nothing more about Maxwell’s
equations than you can learn by deriving Snell’s law.
Geometrical optics is an interesting subject full of
wonderful applications, a subject that can appear
anywhere in an introductory physics course.

We have a preference not to introduce geomeltrical
optics after Maxwell’s equations. With Maxwell’s
theory, the student is introduced to the wave nature of
one component of matter, namely light. If the focus is
keptonthe basic nature of matter, the next step is fo look
at the photoelectric effect and the particle nature of
light. You then see that light has both a particle and a
wave nature, which opens the doorto the particle-wave
nature of all matter and the subject of quantum me-
chanics. We have a strong preference not to interrupt
this focus on the basic nature of matter with a long and
possibly distracting chapter on geometrical optics.



REFLECTION FROM CURVED SURFACES

The Mormon Tabernacle, shown in Figure (1), is
constructed in the shape of an ellipse. If one stands at
one of the focuses and drops a pin, the pin drop can be
heard 120 feetaway at the other focus. The reason why
can be seen from Figure (2), which is similar to Figure
(8-28) where we showed you how to draw an ellipse
with a pencil, a piece of string, and two thumbtacks.

The thumbtacks are at the focuses, and the ellipse is
drawn by holding the string taut as shown. As you
move the pencil point along, the two sections of string
always make equal angles 6; and 6, to a line perpen-
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Mormon Tabernacle finished, 1871.

dicular or normal to the part of the ellipse we are
drawing. The best way to see that the angles 6; and 6,
are always equal is to construct your own ellipse and
measure these angles at various points along the curve.

Ifasound wave wereemitted from focus 1 in Figure (2),
the part of the wave that traveled over to point A on the
ellipse would be reflected at an angle 6, equal to the
angle of incidence ©; , and travel over to focus 2. The
part of the sound wave that struck point B on the ellipse,
would be reflected at an angle 6, equal toit’s angle of
incidence 0, and also travel over to focus 2. If you
think of the sound wave as traveling out in rays, then all
the rays radiated from focus 1 end up at focus 2, and that
is why you hear the whisper there. We say that the rays
are focused at focus 2, and that is why these points are
called focuses of the ellipse. (Note also that the path
lengths are the same, so that all the waves arriving at
focus 2 are in phase.)

pencil point

Figure 2
Drawing an ellipse using a string and two thumbtacks.

Mormon Tabernacle today.
Figure 1

Figure 2a
A superposition of the top half of Figure 2 on Figure 1.



The Parabolic Reflection

You make a parabola out of an ellipse by moving one
of the focuses very far away. The progression from a
parabola to an ellipse is shown in Figure (3). Foratrue
parabola, the second focus has to be infinitely far away.

Suppose a light wave were emitted from a star and
traveled to a parabolic reflecting surface. We canthink
of the star as being out at the second, infinitely distant,
focus of the parabola. Thus all the light rays coming in
from the star would reflect from the parabolic surface
and come to a point at the near focus. The rays from the
star approach the reflector as a parallel beam of rays,
thus a parabolic reflector has the property of focusing
parallel rays to a point, as shown in Figure (4a).
| |
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Figure 3
Evolution of an ellipse into a parabola. Fora
parabola, one of the focuses is out at infinity.

If parallel rays enter a deep dish parabolic mirror from
an angle off axis as shown in Figure (4b), the rays do not
focus to a point, with the result that an off axis star
would appear as ablurry blob. (This figure corresponds
tolooking atastar2.5° offaxis, about 5 moon diameters
from the center of the field of view.)

™

focus

parallel rays coming
in from infinity

parabolic
reflector

Figure 4a
Paraliel rays, coming down the axis
of the parabola, focus fo a point.

~.

off axis
parallel rays
focus is
not good\\
parabolic
/ reflector
Figure 4b

For such a deep dish parabola, rays coming
in at an angle of 2.5 °de not focus well.



One way to get sharp images for parallel rays coming
inatanangleistouseashallowerparabolaasillustrated
in Figure (4¢). In that figure, the focal length (distance
from the center of the mirror to the focus) is 2 times the
mirror diameter, giving what is called an f 2 mirror. In
Figure (4d), you can see that rays coming in at an angle
of 2.5° (blue lines) almost focus to a point. Typical
amateur telescopes are still shallower, around f8,
which gives a sharp focus for rays off angle by as much
as 2% to 3°.

light from star on axis

As we can see in Figure (4d), light coming from two
different stars focus at two different points in what is
called the focal plane of the mirror. If you placed a
photographic film at the focal plane, light from each
different star, entering as parallel beams from different
angles, would focus at different points on the film, and
you would end up with a photographic image of the
stars. This is how distant objects like stars are photo-
graphed with what is called a reflecting telescope.

f2 mirror

Figure 4c¢

A shallow dish is made by using only the shallow bottom of the parabola. Here the focal length is twice the
diameter of the dish, giving us an f2 mirror. Tvpical amateur telescopes are still shallower, having a focal
length around 8 times the mirror diameter (f8 mirrors). [The mirror in Figure 4D, that gave a bad focus, was
f-125, having a focal length 1/8 the diameter of the mirror.|

light from star #2, 250 off axis

f2 mirror

light from star #1, on axis

Figure 4d

We can think of this drawing as representing light coming in from a red star at the center of the field of
view, and a blue star 2.5°(5 full moon diameters) away. Separate images are formed, which could be
recorded on a photographic film. With this shallow dish, the off axis image is sharp (but not quite a point).



MIRROR IMAGES

The image you see in a mirror, aithough very familiar,
is still quite remarkable in its reality. Why does it look
soreal? You do not need to know how your eye works
to begin to sce why.

Consider Figure (5a) where light from a point source
reaches your eye. We have drawn two rays. one from
the source to the top of the eye, and one to the bottom.
In Figure (5b). we have placed a horizontal mirmor as
shown and moved the light source a distance h above
the mirror equal to the distance it was below the mirmror
before the mirror was inserted. Using the rule that the
angle of incidence equals the angle of reflection, we
again drew two rays that went from the light source to

eye

point source

Figure 5a
Light from a point source reaching your eye.

eye

point source

mirror

&
_L «* mirror image
A

Figure 5b
There is no difference when the source is al point A,
or af point A" and the light is reflected in a mirror.

the top and to the bottom of the eye. You can see that
if you started at the eye and drew the rays back as
straight lines, ignoning the marror, the rays would
intersect at the old source point A as shown by the
dotted lines in Figure (5b).

To the eye (or a camera) @ point B, there is no
detectable difference between Figures (5a) and (5b). In
both cases, the same rays of light, coming from the
same directions enter the eye. Since the eye has no way
of telling that the rays have been bent. we perceive that
the light source is at the image point A rather than at
the source point A”.

When we look at an extended object, its image in the
mirror does not look identical to the object itself. In
Figure (6), my granddaughter Julia is holding her right
hand in front of a mirror and her left hand off to the side.
The image of the right hand looks like the left hand. In
particular, the fingers of the mirror image of the nght
hand curl in the opposite direction from those of the
right hand itself_ If she were using the right hand rule to
find the direction of the angular momentum of a
rotating object, the mirror image would look as if she
were using a left hand rule.

It is fairly common knowledge that left and right are
reversed in a mirmor image.  But if left and night are
reversed, why aren’t top and bottom reversed also?
Think about that for a minute before you go on to the
next paragraph.

(14

Figure 6
The image of the right hand looks like a left hand.



To see what the image of an extended object should be,
imagine that we place an arrow in front of a mirror as
shown in Figure (7). We have constructed rays from
the tip and the base of the arrow that reflect and enter
the eye as shown. Extending these rays back to the
image, we see that the image arrow has been reversed
front to back. That is what a mirror does. The mirror
image is reversed front to back, not left to right or top
to bottom. It turns out that the right hand, when

reversed front to back as in its image in Figure (6), has
the symmetry properties of a left hand. [fused to define

angular momentum, you would get a left hand rule.
eye

AN
mirror

Figure 7
A mirror image changes front to back, not left to right.

Figure 8a
With a corner reflector, the light is reflected back
it the same direction from which it arrived.

The Comner Reflector

When two vertical mirrors are placed at right angles as
shown in Figure (8a). a horizontal ray approaching the
mirrors is reflected back in the direction from which it
came. It is a little exercise in trigonometry to see that
this is so. Since the angle of incidence equals the angle
of reflection at each mirror surface, we see that the
angles labeled 8 must be equal to each other and the
same for the angles 8,. From the right triangle ABC,
weseethat 6, + 6, =90°. Wealso see that the angles
0,+ 9y also add up to 90° thus 65;=9,, which
implies the exiting ray is parallel to the entering one.

If you mount three mirrors perpendicular to each other
to form the corner of a cube, then light entering this so
called corner reflector from any angle goes back in the
direction from which it came. The Apollo Il astronauts
placed the array of corner reflectors shown in Figure
(8b) on the surface of the moon, so that a laser beam
from the earth would be reflected back from a precisely
known point on the surface of the moon. By measuring
the time it took a laser pulse to be reflected back from
the array, the distance to the moon could be measured
to an accuracy of centimeters. With the distance to the
moon known with such precision, other distances in the
solar system could then be determined accurately.

Figure 8b

Array of corner reflectors left on the moon by the
Apollo astronauts. A laser pulse from the earth,
aimed at the reflectors, returns straight back to the
laser. By measuring the time the pulse takes to go
to the reflectors and back, the distance to that point
on the moon and back can be accurately measured.



MOTION OF LIGHT THROUGH A MEDIUM

We are all familiar with the fact that light can travel
through clear water or clear glass. With some of the
new glasses developed for fiber optics communication,
light signals can travel for miles without serious distor-
tion. If you made a mile thick pane from this glass you
could see objects through it.

From an atomic point of view, it is perhaps surprising
that light can travel any distance at all through water or
glass. A reasonable picture of what happens when a
light wave passes overan atomis provided by the ripple
tank photograph shown in Figure (36-1) reproduced
here. The wave scatters from the atom, and since atoms
are considerably smaller than a wavelength of visible

incident wave
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a) Incident and scattered wave together.
Figure 36-1

light, the scattered waves are circular like those in the
ripple tank photograph. The final wave isthe sumof the
incident and the scattered waves as shown in Figure
(36-1a).

When light passes through a medium like glass or
water, the wave is being scattered by a huge number of
atoms. The final wave pattern is the sum of the incident
wave and all of the many billions of scattered waves.
You might suspect that this sum would be very com-
plex, but thatis not the case. Atthe surface some of the
incident wave is reflected. Inside the medium, the
incident and scattered waves add up to a new wave of
the same frequency as the incident wave but which
travels at a reduced speed. The speed of a light wave
in water for example is 25% less than the speed of light

in a vacuum.
incident wave

ﬁ

b) After incident wave has passed.

If the scattering object is smaller than a wavelength, we get circular scattered waves.



The optical properties of lenses are a consequence of
this effective reduction in the speed of light in the lens.
Figure (9) is a rather remarkable photograph of indi-
vidual short pulses of laser light as they pass through
and around a glass lens. Youcan see that the part of the
wave front that passed through the lens isdelayed by its
motion through the glass. The thicker the glass, the
greater the delay. You can also see that the delay
changed the shape and direction of motion of the wave
front, so that the light passing through the lens focuses
to a point behind the lens. This is how a lens really
works.

Figure 9

Motion of a wave front through a glass lens.
in the motion of the wave front as it passes through the
glass changes the shape and direction of motion of the
wave front, resulting in the focusing of light. (This
photograph should not be confused with ripple tank
photographs where wavelengths are comparable to the

The delay

size of the objects. Here the wavelength of the light is
about one hundred thousand times smaller than the
diameter of the lens, with the result we get sharp
shadows and do noi see diffraction effects.)

In the 18/February/1999 issue of Nature it was
announced that a laser pulse travelled through a gas
of supercooled sodium atoms at a speed of 17 meters
per second! (You can ride a bicycle faster than that.)
This means that the sodium atoms had an index of
refraction of about 18 million, 7.3 million fimes
greater than that of diamond!

— e

Index of Refraction

The amount by which the effective speed of light is
reduced as the light passes through a medium depends
both upon the medium and the wavelength of the light.
There is very little slowing of the speed of light in air,
about a 25% reduction in speed in water, and nearly a
59% reduction in speed in diamond. In general, blue
light travels somewhat slower than red lightin nearly all
media.

It is traditional to describe the slowing of the speed of
light in terms of whatis called the index of refraction of
the medium. The index of refraction n is defined by the
equation

speed of light| e 2 © n
in a medium f light = 7

The index n has to equal 1 in a vacuum because light
alwaystravelsatthespeed 3 % 10® meters inavacuum.
The index n can never be less than 1, because nothing
can travel faster than the speed c. For yellow sodium
light of wavelength 2 = 5.89 x 10”7 cm (589 nanom-
ctc‘rs) the index of refraction of water at 20° C is

= 1.333, which implies a 25% reduction in speed. For
dld.mGlld, n=2.417 for this yellow light. Table 1 gives
the indices of refraction for various transparent sub-
stances for the sodium light.

Vacuum 1.00000  exactly
Air (STP) 1.00029
Ice 1.300
Water (20° C) 1.333
Ethyl alcohol 1.36
Fuzed quartz 1.46
Sugar solution (80%) 1.49
Typm'il crown glass 1.52
Sodium Chloride 1.54
Polystyrene 1.55
Heavy flint glass 1.65
Sapphire 1.77
Zircon 1.923
Diamond 2417
Rutile 2907
Gallium phosphide 3.50

Very cold sodium atoms 18000000 for laser pulse

Table 1
Some indices of refraction for yellow sodium light at a
wavelength of 589 nanometers.



Exercise 1a

What is the speed of lightin air, water, crown glass, and
diamond. Express your answer in feet/nanosecond.
(Take ¢ to be exactly 1 fi/nanosecond.)

Exercise 1b

In one of the experiments announced in Nature, alaser
pulse took 7.05 microseconds to travel .229 millimeters
through the gas of supercoocled sodium atoms. What
was the index of refraction of the gas for this particular
experiment? (The index quoted on the previous page
was for the slowest observed pulse. The pulse we are
now considering went a bit faster.)

CERENKOV RADIATION

In our discussion, in Chapter 1. of the motion of light
through empty space, we saw that nothing, not even
information, could travel faster than the speed of light.
If it did, we could, for example, get answers to ques-
tions that had not yet been thought of.

When moving through a medium, the speed of a light
waveis slowed by repeated scattering and itis no longer
true that nothing can move faster than the speed of light
in that medium. We saw for example that the speed of
light in water is only 3/4 the speed c in vacuum. Many
elementary particles, like the muons in the muon
lifetime experiment, travel at speeds much closer to c.
When acharged particle moves faster than the speed of
light in a medium, we get an effect not unlike the sonic
boom produced by a supersonic jet. We get a shock
wave of light that is similar to a sound shock wave
(sonic boom), or to the water shock wave shown in
Figure (33-30) reproduced here. The light shock wave
is called Cerenkov radiation after the Russian physi-
cist Pavel Cerenkov who received the 1958 Nobel prize
for discovering the effect.

In the muon lifetime picture, one observed how long
muons lived when stopped in a block of plastic. The
experiment was made possible by Cerenkov radiation.
The muons that stopped in the plastic, entered moving
faster than the speed of light in plastic. and as a result
emitted a flash of light in the form of Cerenkov
radiation. When the muondecayed, acharged positron
and a neutral neutrino were emitted. In most cases the
charged positron emerged faster than the speed of light
inthe plastic, and also emitted Cerenkov radiation. The
two flashes of light were detected by the phototube
whichconvertedthe light flashestovoltage pulses. The
voltage pulses were then displayed on an oscilloscope
screen where thetime interval between the pulses could
be measured. Thisinterval represented thetime thatthe
muon lived, mostly at rest, in the plastic.

Figure 33-30

When the source of the waves moves faster than the
speed of the waves, the wave fronts pile up to produce
a shock wave as shown. This shock wave is the sonic
bhoom you hear when a jet plane flies overhead faster
than the speed of sound.



SNELL'S LAW

When a wave enters a medium of higher index of
refraction and travels more slowly, the wavelength of
the wave changes. The wavelength is the distance the
wave travels in one period, and if the speed of the wave
is reduced, the distance the wave travels in one period
is reduced. (In most cases, the frequency or period of
the wave is not changed. The exceptions are in
fluorescence and nonlinear optics where the frequency
or color of light can change.)

We can calculate how the wavelength changes with
wave speed from the relationship

v cm
em. . TRgee
cycle = _ sec
cycle
Setting vy, = ¢/n for the speed of light in the me-

dium, gives for the corresponding wavelength A,

A /n A
A= e = e = lE L (2)
T T nT n
where A =c/T is the wavelength in a vacuum. Thus,
for example, the wavelength of light entering a dia-

mond from air will be shortened by a factor of 1/2.42.

What happens when a set of periodic plane waves goes
from one medium to another is illustrated in the ripple
tank photograph of Figure (10). In this photograph, the

Figure 10

Refraction at surface of water. When the waves enter
shallower water, they travel more slowly and have a
shorter wavelength. The waves must travel in a
different direction in order for the crests to match up.

water has two depths, deeper on the upper part where
the waves travel faster, and shallower in the lower part
where the waves travel more slowly. You can see that
the wavelengths are shorter in the lower part, but there
are the same number of waves. (We donot gain orloose
waves at the boundary.) The frequency, the number of
waves that pass you per second, is the same on the top
and bottom.

The only way that the wavelength can be shorter and
still have the same number of waves is for the wave to
bend at the boundary as shown. Wehave drawn arrows
showing the direction of the wave in the deep water (the
incident wave) and in the shallow water (what we will
call the transmitted or refracted wave),and we see that
the change in wavelength causes a sudden change in
direction of motion of the wave. If you look carefully
you will also see reflected waves which emerge at an
angle of reflection equal to the angle of incidence.

Figure (11) shows a beam of yellow light entering a
piece of glass. The index of refraction of the glass is
1.55, thus the wavelength of the light in the glass is only
.65 times as long as thatin air (n = 1 forair). Youcan
see both the bending of the ray as it enters the glass and
also the reflected ray. (You also see internal reflection
and the ray emerging from the bottom surface.) You
cannot see the individual wave crests, but otherwise
Figures (10) and (11) show similar phenomena.

INCIDENT

Figure 11

Refraction at surface of glass. When the light waves
enter the glass, they travel more slowly and have a
shorter wavelength. Like the water waves, the light
waves must travel in a different direction in order for
the crests to match up.



Derivation of Snell's Law

Tocalculate the angle by which a light ray is bent when
it enters another medium, consider the diagram in
Figure (12). The drawing represents a light wave,
traveling in a medium of index n;, incident on a
boundary atan angle 8,. Wehave sketched successive
incident wave crests separated by the wavelength A,.
Assuming that the index n, in the lower medium is
greater than ny, the wavelength A, will be shorter than
A, and the beam will emerge at the smaller angle ©,.

To calculate the angle 8, at which the transmitted or
refracted wave emerges, consider the detailed section
of Figure (12) redrawn in Figure (13a). Notice that we
have labeled two apparently different angles by the
same label 8,. Why these anglesareequalis seeninthe
construction of Figure (13b) where we see that the
angles o and O, are equal.

Exercise 2

Show that the two angles labeled 6, in Figure (13a)
must also be equal.

»
w >

Figure 12
Analysis of refraction. The cresis must match at the
boundary between the different wavelength waves.

Since the triangles ACB and ADB are right triangles in
Figure (13a), we have

A, = ABsin(8,) = Ag/n, 3)
;"‘2 AB Siﬂ [82‘} = lo."ﬂz {4)

where AB is the hypotenuse of both triangles and A, is
the wavelength when ny = 1. When we divide Equa-
tion 4 by Equation 5, the distances AB and 7&.0 cancel,
and we are left with

sin(6) n,
sin(6,)  n

or

Snells law (5)

n sin [Ell) =, sin{E!z)

Equation 5, known as Snell’s law, allows us to calculate
the change in direction when a beam of light goes from
one medium to another.

Figure 13a
The angles
involved in
the analysis.

Figure 13b
Detail.




INTERNAL REFLECTION

Because of the way rays bend at the interface of two
media, there is a rather interesting effect when light
goes from a material of higher to a material of lower
index of refraction, as in the case of light going from
water into air. The effect is seen clearly in Figure (14).
Here we have a multiple exposure showing a laser
beam entering a tank of water. being reflected by a
mirror, and coming out at different angles. The outgo-
ing ray is bent farther away from the normal as it
emerges from the water. We reach the point where the
outgoing ray bends and runs parallel to the surface of
the water. This is a critical angle, for if the mirror is
turned farther, the ray can no longer get out and is
completely reflected inside the surface.

Figure 14

Internal reflection. We took three exposures of a
laser beam reflecting off an underwater mirror set at
different angles. In the first case the laser beam
makes it back out of the water and sirikes a white
cardboard behind the water tank. In the other two
cases, there is total internal reflection at the under
side of the water surface. In the final exposure we
used a flash to make the mirror visible.

diver looking up

Figure 14a

When you are swimming under water and look up,
vyou see the outside world through a round hole.
Ouiside that hole, the surface is a silver mirror.

Itis easy to calculate the critical angle 8. at which this
complete internal reflection begins. Set the angle of
refraction, 8, in Figure (14), equal to 90° and we get
from Snell’s law

n;sinB, = nysinB, = n,8in90° = ny

. ny I ]
sinB, = . ;| 8. = sin ln— (6)
1 1

For light emerging from water, we have n, = 1 for air
and n; = 1.33 for water giving

1
133 = 5

0. = 48.6° (7
Anyone who swims underwater, scuba divers espe-
cially, are quite familiar with the phenomenon of
internal reflection. When you look up at the surface of
the water, you can see the entire outside world through
acircular region directly overhead, as shown in Figure

(14a). Beyond this circle the surface looks like a silver
mirror.

sin”! 6, =

Exercise 3

A glass prism can be used as shown in Figure (15) to
reflect light at right angles. The index of refraction n, of
the glass must be high enough so that there is total
internal reflection at the back surface. Whatis the least
value n, one can have to make such a prism work?

(Assume the prism ig in the air where n=1.)

—

Figure 15
Right angled prism. The 45°
index of refraction of the
glass has to be high enough w
to cause total internal
reflection.




Fiber Optics

Internal reflection plays a critical role in modern com-
munications and modern medicine through fiber op-
tics. When light is sent down through a glass rod or
fiber so thatitstrikes the surface atan angle greater than
the critical angle, as shown in Figure (16a), the light
will be completely reflected and continue to bounce
down the rod with no loss out through the surface. By
using modern very clear glass, a fiber can carry a light
signal for miles without serious attenuation.

Thereasonitis moreeffective touselightin glass fibers
than electrons in copper wire for transmitting signals,
is that the glass fiber can carry information at a much
higher rate than a copper wire, as indicated in Figure
(16b). This is because laser pulses traveling through
glass, can be turned on and off much more rapidly than
electrical pulses in a wire. The practical limit for
copper wire is on the order of a million pulses or bits of
information per second (corresponding to a baud rate
of one megabit). Typically the information rate is

Figure 16a
Because of internal
reflections, light can
travel down a glass
fiber, even when the
fiber is bent.

%3

Figure 16b
A single glass fiber can carry the same amount
of information as a fat cable af copper wires.

much slower over commercial telephone lines, not
much inexcess of 30 to 50 thousand bits of information
per second (corresponding to 30 to 50 kilobaud).
These rates are fast enough to carry telephone conver-
sations or transmit text to a printer, but painfully slow
for sending pictures and much too slow for digital
television signals. High definition digital television
will require that information be sent at a rate of about
3 millionbits or pulses every 1/30of asecond forabaud
rate of 90 million baud. (Compare that with the baud
rate on yourcomputer modem.) Incontrast, fiber optics
cables are capable of carrying pulses or bits at a rate of
about a billion (109 ) per second, and are thus well
suited for transmitting pictures or many phone conver-
sations at once.

By bundling many fine fibers together, as indicated in
Figure (17), one can transmit a complete image along
the bundle. One end of the bundle is placed up against
the object to be observed, and if the fibers are not mixed
up, the image appears at the other end.

Totransmita high resolutionimage, one needs abundle
of about a million fibers. The tiny fibers needed for this
are constructed by making a rather large bundle of
small glass strands, heating the bundle to soften the
glass, and then stretching the bundle until the indi-
vidual strands are very fine. (If you have heated a glass
rod over a Bunsen burner and pulled out the ends, you
have seen how fine a glass fiber can be made this way.)

Figure 17
A bundle of glass fibers
can be used to carry an
image from one poini to
another. The order of a
million fibers are needed
to carry the medical
images seen on the next
page.



Medical Imaging

The use of fiber optics has revolutionized many aspects
of medicine. It is an amazing experience to go down
and look inside your own stomach and beyond, as the
author did a few years ago. This is done with a flexible
fiber optics instrument called aretroflexion, producing
the results shown in Figure (18). An operation, such as
the removal of a gallbladder, which used to require
opening the abdomen and a long recovery period, can
now be performed through a small hole near the navel,
using fiber optics to view the procedure. You can see
the viewing instrumentand suchanoperationinprogress
in Figure (19).

flexible optical
fiber viewing
scope

stomach

ou are
ere

Figure 18
Close-up view of the
author taken by
photographer Dr.
Richard Rothstein.

Figure 19

Gallbladder operation in progress, being viewed by the
rigid laparoscope shown on the right. Such views are
now recorded by high resolution television.

PRISMS

So far in our discussion of refraction, we have consid-
ered only beams of light of one color, one wavelength.
Because the index of refraction generally changes with
wavelength, rays of different wavelength will be bent
at different angles when passing the interface of two
media. Usually the index of refraction of visible light
increases as the wavelength becomes shorter. Thus
when white light, which is a mixture of all the visible
colors, is sent through a prism as shown in Figure (20),
the short wavelength blue light will be deflected by a
greater angle than the red light, and the beam of light is
separated into a rainbow of colors.

n(red)
n(yellow) = 1.522
n(green) = 1.525

=1.516

n(blue) =1.529
6(initial) = 30.2°

Figure 20

When light is sent through a prism, it is separated into
a rainbow of colors. In this scale drawing, we find that
almost all the separation of colors occurs at the second
surface where the light emerges from the glass.



Rainbows

Rainbows in the sky are formed by the reflection and
refraction of sunlight by raindrops. It is not, however,
particularly easy to see why a rainbow is formed. René
Descartes figured this out by tracing rays thatenter and
leave a spherical raindrop.

In Figure (21a) we have used Snell’s law to trace the
path of a ray of yellow light that enters a spherical drop
of water (of index n = 1.33), is reflected on the back
side, and emerges again on the front side. (Only a
fraction of the light is reflected at the back, thus the
reflected beam is rather weak.) In this drawing, the
angle ©, is determined by sin (81}: 1.33 sin%ﬁg}.
At the back, the angles of incidence and reflection are
equal, and atthe front we have 1.33 sin (82) =sin {BIJ
(taking the index of refraction of air = 1). Nothing is
hard about this construction, it is fairly easy to do with
a good drafting program like Adobe Illustrator and a
hand calculator.

InFigure (21b) we see what happens when anumber of
parallel rays enter a spherical drop of water. (This is
similar to the construction that was done by Descartes
in 1633.) When you look at the outgoing rays, it is not
immediately obvious that there is any special direction
for the reflected rays. Butif you look closely you will
see that the ray we have labeled #11 is the one that
comes back at the widest angle from the incident ray.

Ray #1, through the center, comes straight back out.
Ray #2 comes out atasmall angle. The angles increase
uptoRay#1 1, and then start to decrease again for Rays
#12 and #13. In our construction the maximum angle,
thatof Ray #11, was41.6° closeto the theoretical value
of 42° for yellow light.

Figure 21a
Light ray
reflecting from
a raindrop.

Whatis more important than the fact that the maximum
angle of deviation is 42° is the fact that the rays close to
#11 emerge as more or less parallel to each other. The
other rays, like those near #3 for example come out at
diverging angles. That light is spread out. But the light
emerging at 42° comes out as a parallel beam. When
you have sunlight striking many raindrops, more yel-
low light is reflected back at this angle of 42 “than any
other angle.
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Figure 21b

Light from ray 11 comes out at
the maximum angle of 42°
Nearby rays come out at nearly
the same angle, producing a
parallel beam at an angle of 42°.

red
yellow
blue

Figure 21c

You will see the yellow part of the rainbow at
an angle of 42 °as shown above. Red will be
seen at a greater angle, blue at a lesser one.



If the atmosphere is not so clear, if there is a bit of haze
or moisture as one often gets in the summer, the blue
light is absorbed by the haze, and the last image we see
setting is the greenimage. Thisisthe origin of the green
flash. With still more haze you get a red sunset, all the
other colors having been absorbed by the haze.

Usually it requires binoculars to see the green or blue
colors at the instant of sunset. But sometimes the
atmospheric conditions are right so that this final light
of the sunisreflected on clouds and can be seen without
binoculars. If the clouds are there, there is probably
enough moisture to absorb the blue image, and the
resulting flash on the clouds is green.

Halos and Sun Dogs

Another phenomenon often seen is the reflection of
light from hexagonal ice crystals in the atmosphere.
The reflection is seen at an angle of 22° from the sun.
If the ice crystals are randomly oriented then we get a
complete haloas seenin Figure (23a). If the crystals are
falling with their flat planes predominately horizontal,
we only see the two pieces of the halo ateach side of the
sun, seen in Figure (24). These little pieces of rainbow
are known as “sun dogs™.

Figure 23
Halo caused
by reflection
by randomly
oriented
hexagonal ice
crystals.

Figure 24
Sun dogs
caused by
ice crystals
falling flat.

LENSES

The main impact geometrical optics has had on man-
kind is through the use of lenses in microscopes,
telescopes, eyeglasses, and of course, the human eye.
The basic idea behind the construction of a lens is
Snell’s law, but as our analysis of light reflected from
a spherical raindrop indicated, we can get complex
results from even simple geometries like a sphere.

Modern optical systems like the zoom lens shown in
Figure (25) are designed by computer. Lens design is
anideal problem for the computer, for tracing light rays
through a lens system requires many repeated applica-
tions of Snell’s law. When we analyzed the spherical
raindrop, we followed the paths of 12 rays for an index
of refraction for only yellow light. A much better
analysis would have resulted from tracing at least 100
rays for the yellow index of refraction, and then repeat-
ing the whole process for different indices of refraction,
corresponding to different wavelengths or colors of
light. This kind of analysis, while extremely tedious to
do by hand, can be done in seconds on a modern
desktop computer.

In this chapter we will restrict our discussion to the
simplest of lens systems in order to see how basic
instruments, like the microscope, telescope and eye,
function. You will not learn here how to design acolor
corrected zoom lens like the Nikon lens shown below.

Figure 25
Nikon zoom lens.
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Spherical Lens Surface

A very accurate spherical surface on a piece of glass is
surprisingly easy tomake. Taketwo pieces of glass, put
amixture of grinding powder and water between them,
rub them together in a somewhat regular, somewhat
irregular, pattern that one can learn in less than 5
minutes. The result is a spherical surface on the two
pieces of glass, one being concave and the other being
convex. The reason you get a spherical surface from
this somewhat random rubbing is that only spherical
surfaces fit together perfectly for all angles and rota-
tions. Once the spheres have the desired radius of
curvature, youuse finer and finer grits to smooth out the
scratches, and then jeweler’s rouge to polish the sur-
faces. With any skill at all, one ends up with a polished
surface that is perfectly spherical to within a fraction of
a wavelength of light.

To see the optical properties of a spherical surface, we
can start with the ray diagram we used for the spherical
raindrop, and remove the reflections by extending the
refracting medium back as shown in Figure (26a). The
result is not encouraging. The parallel rays entering
near the center of the surface come together—focus—
quite a bit farther back than rays entering near the outer
edge. This range of focal distances is not useful in
optical instruments.

Figure 26a
Focusing properties of a spherical surface. {Not good!)

In Figure (26b) we have restricted the area where the
rays are allowed to enter to a small region around the
center of the surface. To a very good approximation all
these parallel rays come together, focus, at one point.
This is the characteristic we want in a simple lens, to
bring parallel incoming rays together at one point as the
parabolic reflector did.

Figure (26b) shows us that the way to make a good lens
using spherical surfaces is to use only the central part
of the surface. Rays entering near the axis as in Figure
(26b) are deflected only by small angles, angles where
we can approximate sin {EI} by Oitself. When the
angles of deflection are small enough to use small angle
approximations, a spherical surface provides sharp
focusing. As a result, in analyzing the small angle
spherical lenses, we can replace the exact form of
Snell’s law

nysin(8;) = n, sin(6,) (5 repeated)
by the approximate equation
Snell's law
n, 91 = nzﬂz for small (8)
angles
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Figure 26b
We get a much betier focus if we use only a small part
of the spherical surface.




Focal Length of a Spherical Surface
Let us now use the simplified form of Snell’s law to
calculate the focal length f of a spherical surface, i.e.,
the distance behind the surface where entering parallel
rays come to a point. Unless you plan to start making
your own lenses, you do not really need this result, but
the exercise provides an introduction to how focal
lengths are related to the curvature of lenses.

Consider two parallel rays entering a spherical surface
as shown in Figure (27). One enters along the axis of
the surface, the other a distance h above it. The angle
labeled @, is the angle of incidence for the upper ray.
while 8, istherefracted angle. Theseanglesare related
by Snell’s law

n 6 =n,6,
or

_m _
6 = o6 0

If you recall your high school trigonometry you will
remember that the outside angle of a triangle, 8; in

Now consider the two triangles reproduced in Figures
(27b) and (27c). Using the small angle approximation
tan[El] = sin (9) ~ 8, we have for Figure (27b)

BI = E L= E

: 7 (11
Substituting these values for 8; and o into Equation
10 gives

h_fMih h
r npr f (12)

The height h cancels, and we are left with

1_1fy m
7o)
The fact that the height h cancels means that parallel
rays entering at any height h (as long as the small angle
approximation holds) will focus at the same point a

distance f behind the surface. This is what we saw in
Figure (26b).

(13)

Figure (26b) wasdrawnforn; = 1 (air)and n, = 1.33
(water) so that ny/n, =1/1.33=.75. Thus for that

Figure (27a), s equal to the sum of the opposite angles, drawing we should have had
6, and o in this case. Thus )
B 1 1 1 11
0, =0,+a 7T F1=75) = 2{23) = ;[1}
or using Equation 9 for 8, or
o _ Mg 0o f=4r (14)
L= ny 1+ o ) as the predicted focal length of that surface.
S~ - n1
gi~~./ Mo
Figure 27 parallel rays
Calculating the _
Jfocal length fof a
spherical surface.
Ty Figure 27a
h S - 6; = 32 +a
61 ~~_
r
Figure 27b Figure 27¢
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Exercise 5

Compare the prediction of Equation 14 with the results
we got in Figure (26b). That s, what do you measure for
the relationship between fand r in that figure?

Exercise 6

Theindex ofrefractionfor red lightinwater is slightly less
than the index of refraction for blue light. Will the focal
length of the surface in Figure (26b) be longer or shorter
than the focal length for red light?

Exercise 7

The simplest model for a fixed focus eye is a sphere of
index of refraction n,. The index n, is chosen so that
parallel light entering the front surface of the sphere
focuses on the back surface as shown in Figure (27d).
What value of n, is required for this model towork when
n,=17 Looking at the table of indexes of refraction,
Table 1, explain why such a model would be hard to
achieve.

Aberrations

When parallel rays entering a lens do not come to focus
at a point, we say that the lens has an aberration. We
saw in Figure (26a) that if light enters too large aregion
of a spherical surface, the focal points are spread out in
back. Thisis called spherical aberration. One cure for
spherical aberration is to make sure that the diameter of
any spherical lens you use is small incomparison to the
radius of curvature of the lens surface.

Figure 27d
A simple, but hard to achieve, model for an eve.

We get rainbows from raindrops and prisms because
the index of refraction for most transparent substances
changes with wavelength. As we saw in Exercise 6,
this causes red light to focus at a different point than
yellow or blue light, (resulting in colored bands around
the edges of images). This problem is called chromatic
aberration. The cure for chromatic aberration is to
construct complex lenses out of materials of different
indices of refraction. With careful design, you can
bring the focal points of the various colors back to-
gether. Some of the complexity in the design of the
zoom lens in Figure (25) is to correct for chromatic
aberration.

Astigmatism is a common problem for the lens of the
human eye. You get astigmatism when the lens is not
perfectly spherical, but is a bit cylindrical. If, for
example, the cylindrical axis is horizontal, then light
from a horizontal line will focus farther back than light
from a vertical line. Either the vertical lines in the
image are in focus, or the horizontal lines, but not both
at the same time. (In the eye, the cylindrical axis does
not have to be horizontal or vertical, but can be at any
angle.)

There can be many other aberrations depending upon
what distortions are present in the lens surface. We
once built a small telescope using a shaving mirror
instead of a carefully ground parabolic mirror. The
image of asingle star stretched outin aline that covered
an angle of about 30 degrees. This was an extreme
example of an aberration called coma. That telescope
provided a good example of why optical lenses and
mirrors need to be ground very accurately.

What, surprisingly, does not usually cause a serious
problem is a small scratch on alens. You do not get an
image of the scratch because the scratch is completely
out of focus. Instead the main effect of a scratch is to
scatter light and fog the image a bit.



Perhaps the most famous aberration in history is the
spherical aberration in the primary mirror of the orbit-
ing Hubble telescope. The aberration was caused by an
undetected error in the complex apparatus used to test
the surface of the mirror while the mirror was being
ground and polished. The ironic part of the story is that
the aberration could have easily been detected using the
same simple apparatus all amateur telescope makers
use to test their mirrors (the so called Foucault test), but
such a simple minded test was not deemed necessary.

What saved the Hubble telescope is that the engineers
found the problem with the testing apparatus, and could
therefore precisely determine the error in the shape of
the lens. A small mirror, only a few centimeters in
diameter, was designed to correct for the aberration in
the Hubble image. When this correcting mirror was
inserted near the focus of the main mirror, the aberra-
tion was eliminated and we started getting the many
fantastic pictures from that telescope.

Another case of historical importance is the fact that
Issac Newton invented the reflecting telescope toavoid
the chromatic aberration present in all lenses at that
time. With a parabolic reflecting mirror, all parallel
rays entering the mirror focus at a point. The location
of the focal point does not depend on the wavelength of
the light (as long as the mirror surface is reflecting at
that wavelength). You also do not get spherical aber-
ration either because a parabolic surface is the correct
shape for focusing, no matter how big the diameter of
the mirror is compared to the radius of curvature of the
surface.

Figure 28

Correction of the Hubble telescope mirror. Top: before
the correction. Bottom: same galaxy after correction.
Left: astronauts installing correction mirror.



THIN LENSES

In Figure (29), we look at what happens when parallel
rays pass through the two spherical surfaces of a lens.
The top diagram (a) is a reproduction of Figure (26b)
where a narrow bundle of parallel rays enters a new
medium through a single spherical surface. By making
the diameter of the bundle of rays much less than the
radius of curvature of the surface, the parallel rays all
focustoasingle point. We wereable to calculate where
this point was located using small angle approxima-
tions.

In Figure (29b), we added a second spherical surface.
The diagram is drawn to scale for indices of refraction
n =1 outside the gray region and n = 1.33 inside, and
using Snell’s law at each interface of each ray. (The
drawing program Adobe Illustrator allows you to do
this quite accurately.) The important point to note is
that the parallel rays still focus to a point. The differ-
ence is that the focal point has moved inward.

(a)

(b)

(c)

Figure 29

A two surface lens. Adding a second surface still leaves
the light focused to a poini, as long as the diameter of
the light bundle is small compared to the radii of the
lens surfaces.

In Figure (29c), we have moved the two spherical
surfaces close together to form what is called a thin
lens. We have essentially eliminated the distance the
lighttravels between surfaces. If the index of refraction
outside the lens is 1 and has a value n inside, and
surfaces have radii of curvature r{ and r,, then the
focal length f of the lens given by the equation

1 11
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Equation 15, which is known as the lens maker’s
equation, can be derived in a somewhat lengthy exer-
cise involving similar triangles.

lens maker's
equation

(15)

Unless you are planning to grind your own lenses, the
lens maker’s equation is not something you will need
to use. When you buy a lens, you specify what focal
length you want, what diameter the lens should be, and
whether or not it needs to be corrected for color
aberration. You are generally not concerned with how
the particular focal length was achieved—what combi-
nation of radii of curvatures and index of refraction
were used.

Exercise 8

(a) See how well the lens maker's equation applies to
our scale drawing of Figure (29¢). Our drawing was
done to a scale where the spherical surfaces each had
aradius of =, =37mm, and the distance f from the
center of the lens to the focal point was 55 mm.

(b) What would be the focal length fof the lens if it had
been made from diamond with an index of refraction
n=2427




The Lens Equation

What is important in the design of asimple lens system
iswhereimages are formed forobjects that are different
distances from the lens. Light fromavery distant object
enters a lens as parallel rays and focuses at a distance
equal to the focal length f behind the lens. To locate
the image when the object is not so far away, you can
either use a simple graphical method which involves a
tracing of two or three rays, oruse whatis called the lens
equation which we will derive shortly from the graphi-
cal approach.

For our graphical work, we will use an arrow for the
object, and trace out rays coming from the tip of the
arrow. Where the rays come back together is where the
image is formed. We will use the notation that the
object is at a distance (o) from the lens, and that the
image is at a distance (i) as shown in Figure (30).

In Figure (30) we have located the image by tracing
three rays from the tip of the object. The top ray is
parallel to the axis of the lens, and therefore must cross
the axis at the focal point behind the lens. The middle

ray, which goes through the center of the lens, is
undeflected if the lens is thin. The bottom ray goes
through the focal pointin front of the lens, and therefore
must come out parallel to the axis behind the lens.
(Lenses are symmetric in that parallel light from either
side focuses at the same distance f from the lens.) The
image is formed where the three rays from the tip
merge. Tolocate the image, you only need to draw two
of these three special rays.

Exercise 9

(a) Graphically locate the image of the object in Figure
(31).

(b) A ray starts out from the tip of the object in the
direction of the dotted line shown. Trace out this ray
through the lens and show where it goes on the back
side of the lens.
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Figure 30

Locating the image using ray tracing. Three rays are
easy to draw. One ray goes straight through the center
of the lens. The top ray, parallel to the axis, infersects
the axis where parallel rays would focus. A ray going
through the left focus, comes out parallel to the axis.
The image of the arrow tip is located where these rays
intersect.

InExercise 9, you found that, once you have located the
image, you can trace out any other ray from the tip of
the object that passes through the lens, because these

rays must all pass through the tip of the image.

object e f

Figure 31
Locate the image of the arrow, and then trace the ray
starting out in the direction of the dotted line.



Negative Image Distance

The lens equation is more general than you might
expect, for it works equally well for positive and
negative distances and focal lengths. Let us start by
seeing what we mean by a negative image distance.
Writing Equation 15 in the form

1_11 (16a)

let us see what happens if 1/o is bigger than 1/f so
that 7 turns out to be negative. If 1/ois bigger than 1/f.
that means that o is less than f and we have placed the
object within the focal length as shown in Figure (33).

When we trace out two rays from the tip of the image.
we find that the rays diverge after they pass through the
lens. They diverge as if they were coming from a point
behind the object, a point shown by the dotted lines. In
this case we have what is called a virfual image, which
is located at a negative image distance (i). This
negative image distance is correctly given by the lens
equation (16a).

(We will not drag you through another geometrical
proof of the lens equation for negative image distances.
It should be fairly convincing that just when the image
distance becomes negative in the lens equation, the
geometry shows that we switch from a real image on
the right side of the lens to a virtual image on the left.)

Figure 33
When the object is located within the focal length, we
get a virtual image behind the object.

Negative Focal Length

and Diverging Lenses

In Figure (33) we got a virtual image by moving the
object inside the focal length. Another way to get a
virtual image is to use a diverging lens as shown in
Figure (34). Here we have drawn the three special rays,
but the role of the focal point is reversed. The ray
through the center of the lens goes through the center as
before. The top ray parallel to the axis of the lens
diverges outward as if it came from the focal point on
the leftsideof thelens. The ray from the tip of the object
headed for the right focal point, comes out parallel to
the axis. Extending the diverging rays on the right,
back to the left side, we find a virtual image on the left
side.

You get diverging lenses by using concave surfaces as
shown in Figure (34). In the lens maker’s equation,

1 11
7= b1l

lensmaker's
equation

(15)

you replace 1/r by — 1/r for any concave surface. If
I/f turns out negative, then you have a diverging lens.
Using this negative value of f in the lens equation (with

f==|f])we get

l:_(LJ,l
i |f| 0

(16b)

This always gives a negative image distance i, which
means that diverging lenses only give virtual images.

virtual
image

object

Figure 34
A diverging lens always gives a virtual image.



There is a very, very simple relationship between the
objectdistance o, the image distance i and the lens focal
length f. Itis

the lens
equation

(16)

Equation 16 is worth memorizing if you are going todo
any work with lenses. Itis the equation you will use all
the time, it is easy to remember, and as you will see
now, the derivation requires some trigonometry you
are not likely to remember. We will take you through
the derivation anyway, because of the importance of
the result.

In Figure (32a), we have an object of height A that
forms an inverted image of height B. We located the
image by tracing the top ray parallel to the axis that
passes through the focal point behind the lens, and by
tracing the ray that goes through the center of the lens.
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Figure 32

Derivation of the lens equation.

In Figure (32b) we have selected one of the triangles
that appears in Figure (32a). The triangle starts at the
tip of the object, goes parallel to the axis over fo the
image, and then down to the tip of the image. The
length of the triangle is (o + {) and the height of the base
18 (A+B). The lens cuts this triangle to form a smaller
similar triangle whose length is o and base is (A). The
ratio of the base tolength of these similar triangles must
be equal, giving

_ - (A+B)  [o+i)
0 (0+i) A

InFigure (32c) we have selected another triangle which
starts where the top ray hits the lens, goes parallel to the
axis over to the image, and down to the tip of the image.
This triangle has a length i and a base of height (A+B)
as shown. This triangle is cut by a vertical line at the
focal plane, giving a smaller similar triangle of length
J and base (A) as shown. The ratio of the length to base
of these similar triangles must be equal, giving

A _ A4B

amn

A+B i
A_aB _ (AB) i (18)
f i A f
Combining Equations 17 and 18 gives
i o+i i
= ——— =14+= (19)
f
Finally. divide both sides by i and we get
1 1 1 lens
? = T + E eguation (16)

which is the lens equation, as advertised.

Note that the lens equation is an exact consequence of
the geometrical construction shown back in Figure
(30). There is no restriction about small angles. How-
ever if you are using spherical lenses, you have to stick
to small angles or the light will not focus to a point.



Exercise 10

You have a lens making machine that can grind sur-
faces, either convex or concave, with radius of curva-
tures of either 20 cm or 40 cm, or a flat surface. How
many different kinds of lenses can you make? What is
the focal length and the name of the lens type for each
lens? Figure (35) shows the names given to the various
lens types.

Negative Object Distance

With the lens equation, we can have negative image
distances and negative focal lengths, and also negative
object distances as well.

In all our drawings so far, we have drawn rays coming
out of the tip of an object located at a positive object
distance. A negative object distance means we have a
virtual object where rays are converging toward the tip
of the virtual object but don’t get there. A comparison
of the rays emerging from a real object and converging
toward a virtual object is shown in Figure (36). The
converging rays (which were usually created by some
other lens) can be handled with the lens equation by
assuming that the distance from the lens to the virtual
object is negative.
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Figure 35
Various lens types. Note that eyveglasses are
usually meniscus convex or meniscus concave.

As an example, suppose we have rays converging to a
point, and we insert a diverging lens whose negative
focal length f= —| I | is equal to the negative object
distance 0 = — | o| as shown in Figure (37). The lens
equation gives

1 11 1 1 1 1

=== ———-——=——-—(
A A
If | f|=]o|. then 1/i=0 and the image is infinitely far
away. This means that the light emerges as a parallel
beam as we showed in Figure (37).
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Figure 36

Positive and negative object distances.

negative focal length

Figure 37
Negative focal length.



Multiple Lens Systems

Using the lens equation, and knowing how to handle
both positive and negative distances and focal lengths,
you can design almost any simple lens system you
want. Theideais to work your way through the system,
one lens at a time, where the image from one lens
becomes the object for the next. We will illustrate this
process with a few examples.

As our first example, consider Figure (38a) where we
have two lenses of focal lengths f; =10 cm and
f>=12 cm separated by a distance D =40 cm. An
object placed at a distance o; = 17.5 cm from the first
lens creates an image a distance i, behind the first lens.
Using the lens equation, we get

I 1

i, =
"o

i; = 2333 cm

11 1

=" Q1)

175 ~ 2333

the same distance we got graphically in Figure (38a).

Thisimage, which acts as the object for the second lens
has an object distance

0, =D—-i; = 40cm—-23.33cm = 16.67 cm

This gives us a final upright image at a distance i,

given by
111 1 1 1 _
i [ 0, 12 1667 4286 @
i = 42.86 cm (23)

which also accurately agrees with the ge?melrical '
construction, i 2 :

InFigure (38b), we moved the second lens up to within
8 cm of the first lens, so that the first image now falls
behind the second lens. We now have anegative object
distance

o;=D-i; =8ecm-2333cm = - 1533 ¢cm

Using this negative object distance in the lens equation
gives

5] - f2 a3 12 1533
_l, o
T 1533 ~ 673
i = 6.73cm (24)

In the geometrical construction we find that the still
inverted image is in fact located 6.73 cm behind the
second image.

While it is much faster to use the lens equation than
trace rays, it is instructive to apply both approaches for
a few examples to see that they both give the same
result. In drawing Figure (38b) an important ray was
the one that went from the tip of the original object,
down through the first focal point. This ray emerges
from the first lens traveling parallel to the optical axis.
The ray then enters the second lens, and since it was
parallel to the axis, it goes up through the focal point of
the second lens as shown. The second image is located
by drawing the ray that passes straight through the
second lens. heading for the tip of the first image.
Where these two rays cross is where the tip of the final
image is located.

i :—;,—}4% 0,
: i |
| 1
object : . ! image b,
! H ! [
| ‘ | 17510 0 B / 20
F“T :THI 1473 23.33cm
! 2 Figure 38b
[ | | | | | We moved the second lens in so that
-175-10 0 23.33 40 52 82.85 cm . . . .
) the second object distance is negative.
Figure 38a

Locating the image in a two lens system.

We now get an inverted image 6.73
cm from the second lens.



In Figure (38c) we sketched a number of rays passing
through the first lens, heading for the firstimage. These
rays are converging on the second lens, which we point
out in Figure (36b) was the condition for a negative
object distance.

Figure 38c

Two Lenses Together

If you put two thin lenses together, as shown in Figure
(39), you effectively create a new thin lens with a
different focal length. Tofind out what the focal length
of the combination is, you use the lens equation twice,
setting the second objectdistance 0, equal to minus the
first image distance —i; .

fortwe lenses (25)

0, = —1
2 1 together

From the lens equations we have

1 1 1
= (26)
i I oo

1 1 1
r_r 1 @n
ip i o

Setting 0, = —i; in Equation 27 gives
1 1 1 11

R ) Bh

Using Equation 26 for 1/i; gives
1_1,1 1
L Lo

1 1 1 1

i — = — 4+ —

op & Ji J2
Now o; is the object distance and i, is the image
distance for the pair of lenses. Treating the pair of

lenses as a single lens, we should have
1 1 1
—+— == 29
o i f

where fis the focal length of the combined lens.

(28)

Comparing Equations 28 and 29 we get

1_1.1
f h h

as the simple formula for the combined focal length.

foeal length of two
thin lenses together

(30)

Exercise 11

(a) Find the image distances i for the geometry of
Figures (38), but with the two lenses reversed, i.e., with
fi=12cm, f;=10cm. Dothis for both length D = 40cm
and D=8cm.

(b) If the two lenses are put together (D = 0) what is the
focal length of the combination?

’ o | i I i
I I 1 —02 >
| |
object o H
i W i
I 1
. object for
Figure 39 12 second lens

T'wo lenses fogether. Since the object for the second
lens is on the wrong side of the lens, the object distance
o3is negative in this diagram. If the lenses are close
together, iy and —oy are essentially the same.



Magnification

Itis natural to define the magnification created by alens
as theratio of the height of the image to the height of the
object. InFigure (40) we have reproduced Figure (38a)
emphasizing the heights of the objects and images.

We see that the shaded triangles are similar, thus the
ratio of the height B of the first image to the height A
of the object is

B .

X = 0—1 (31)
We could define the magnification in the first lens as
the ratio of B/A, but instead we will be a bit tricky and
include a - (minus) sign to represent the fact that the
image is inverted. With this convention we get

m Bl
I_A—Ol

definition of
magnificationm

(32)

Treating B as the object for the second lens gives
=€ _b
B - ()]

The total magnification m, in going from the object A

to the final image C is
C

m12=x

whichhasa + sign because the final image C is upright.
But

| S (i)(ﬁ)

A B /I A
Thus we find that the final magnification is the product
of the magnifications of each lens.

(34)

(35)

m12 = mlmz (36)
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Figure 40
Magnification of two lenses.

Exercise 12

Figures (38) and (40) are scale drawings, so that the
ratio of image to object sizes measured from these
drawings should equal the calculated magnifications.

(a) Calculate the magnifications my, m, and my, for
Figure (38a) or (40) and compare your results with
magnifications measured from the figure.

(b) Do the same for Figure (38b). In Figure (38b), the
finalimage is inverted. Did your final magnification my,
come out negative?

Exercise 13

Figure (41a) shows a magnifying glass held 10 cm
above the printed page. Since the object is inside the
focal length we get a virtual image as seen in the
geometrical construction of Figure (41b). Show that our
formulas predict a positive magnification, and estimate
the focal length of the lens. (Answer: about 17 cm.)

ries froe 30 &
& AP, bt maybe

Figure 41a
Using a magnifving glass.

virtual B o
image

P>

Figure 41b
When the magnifying glass is less than a focal length
away from the object, we see an upright virtual image.



THE HUMAN EYE

A very good reason for studying geometrical optics is
to understand how your own eye works, and how the
situation is corrected when something goes wrong.

R -
B
ny=1
=7
| |
1 ]

Back in Exercise 6 (p21),
during our early discussion
of spherical lens surfaces,
we considered as a model
of an eye a sphere of index ) /
of refraction n, , where n, %{wuum 2'V
was chosen so that parallel 7 T~

rays which entered the front surface focused on the
back surfaceas shownin Figure (27d). The value of n,
turned out to be n, =2.0. Since the only common
substance with an index of refraction greater than
zirconatn=1.923 isdiamond atn=2.417, it would be
difficult to construct such a model eye. Instead some
extra focusing capability is required, both to bring the
focus to the back surface of the eye, and to focus on
objects located at various distances.

retina

Figure 42

The human eyve. The
cornea and the lens
together provide the
extra focusing power
required to focus light
on the refina.
(Photograph of the
human eye by
Lennart Nilsson. )

b)

Figure (42a) is a sketch of the human eye and Figure
42b a remarkable photograph of the eye. As seen in
(42a),lightenters thecornea atthe frontof theeye. The
amount of light allowed to enter is controlled by the
opening of theiris. Togetherthe corneaand crystalline
lens focuses light on the retina which is a film of nerve
[ibers on the back surface of the eye. Information from
the new fibers is carried to the brain through the optic
nerve at the back. In the retina there are two kinds of
nerve fibers, called reds and comes. Some of the
roughly 120 million rods and 7 million cones are seen
magnified about 5000 times in Figure (43). The slender
ones, the rods, are more sensitive todim light, while the
shorter, fatter, cones, provide our color sensitivity.

In our discussion of the human ear, we saw how there
was a mechanical system involving the basilar mem-
brane that distinguished between the various frequen-
cies of incoming sound waves. Information from
nerves attached to the basilar membrane was then
enhanced through processing in the local nerve fibers
before being sent to the brain via the auditory nerve. In
the eye, the nerve fibers behind the retina, some of
which can be seen on the right side of Figure (43), also
do a considerable amount of information processing
before the signal travels to the brain via the optic nerve.
The way that information from the rods and cones is
processed by the nerve fibers is a field of research.

Returning to the front of the eye we have the surface of
the cornea and the crystalline lens focusing light on the
retina. Most of the focusing is done by the cornea. The
shape, and therefore the focal length of the crystalline
lens can be altered slightly by the ciliary muscle in
order to bring into focus objects located at different
distances.

cone

rod

Figure 43
Rods and
cones in the
refina. The
thin ones
are the rods, l;' :

the fat ones s -
the cones. L




Ina normal eye, when the ciliary muscle is in its resting
position, light from infinity is focused on the retina as
shown in Figure (44a). To see a closer object, the
ciliary muscles contract to shorten the focal length of
the cornea-lens system in order to continue to focus
light on the cornea (44b). If the object is too close asin
Figure (44c), the light is no longer focused and the
object looks blurry. The shortest distance at which the
light remains in focus is called the near point. For
children the near point is as short as 7 cm, but as one
ages and the crystalline lens becomes less flexible, the
near point recedes to something like 200 cm. This is
why older people hold written material far away unless
they have reading glasses.

Figure 44a
Parallel light rays from a distant object are focuses on
the retina when the ciliary muscles are in the resting
position.

Figure 44b
The ciliary muscle contracis to shorten the focal length
of the cornea-lens system in order to focus light from a
more nearby object.

Figure 44c "
When an object is to close, the light cannot be focused.
The closest distance we. ...

Nearsightedness and Farsightedness

Not all of us have the so called normal eyes described
by Figure (44). There is increasing evidence that those
who do a lot of close work as children end up with a
condition called nearsightedness or myopia where the
eye is elongated and light from infinity focuses inside
the eye as shown in Figure (45a). This can be corrected
by placing a diverging lens in front of the eye to move
the focus back to the retina as shown in Figure (45b).

The opposite problem, farsightedness, where light
focuses behind the retina as shown in Figure (46a) is
corrected by a converging lens as shown in Figure
(46b).

men iscus
concave 4

Figure 45
Nearsightedness can be corrected by a convex lens..

Figure 46
Farsightedness can be corrected by a convex lens



THE CAMERA

There are a number of similarities between the human
eye and a simple camera. Both have an iris to control
the amount of light entering, and both record an image
at the focal plane of the lens. Ina camera, the focus is
adjusted, not by changing the shape of the lens as in the
eye, but by moving the lens back and forth. The eye is
somewhat like a TV camera in that both record images
at a rate of about 30 per second, and the information is
transmitted electronically to either the brain or a TV
screen.

On many cameras you will find a series of numbers
labeled by the letter f, called the f number or f stop.
Just as for the parabolic reflectors in figure 4 (p3), the
fnumber is the ratio of the lens focal length to the lens
diameter. As you close down the iris of the camera to
reduce the amount of light entering, you reduce the
effective diameter of the lens and therefore increase the
fnumber.

Exercise 14

The iris on the human eye can change the diameter of
the openingtothelens from about2to 8 millimeters. The
total distance from the cornea to the retina is typically
about 2.3 cm. What is the range of f values for the
human eye? How does this range compare with the
range of f value on your camera? (If you have one of
the automatic point and shoot cameras, the f number
and the exposure time are controlled electronically and
you do not get to see or control these yourself.)

Figure 47a
The Physics department’s Minolta
single lens reflex camera.

pentaprism

Figure 47b

The lens system for a Nikon single lens reflex camera.
When you take the picture, the hinged mirror flips out
of the way and the light reaches the film. Before that,
the light is reflected through the prism to the eyepiece.



Depth of Field

There are three ways to control the exposure of the film
inacamera. One is by the speed of the film, the second
is the exposure time, and the third is the opening of the
iris or fstop. In talking a picture you should first make
sure the exposure is short enough so that motion of the
camera and the subject do not cause blurring. If your
film is fast enough, you can still choose between a
shorter exposure time or a smaller f'stop. This choice
is determined by the depth of field that you want.

The concept of depth of field is illustrated in Figures
(48aand b). In (48a), we have drawn the rays of light
from an object to an image through an f2 lens, alens
with a focal length equal to twice its diameter. (The
effective diameter can be controlled by a flexible
diaphragm or iris like the one shown.) If you placed a
film at the image distance, the point at the tip of the
object arrow would focus to a point on the film. If you
moved the film forward to position 1, or back to
position 2, the image of the arrow tip would fill a circle
about equal to the thickness of the three rays we drew
in the diagram.

If the film were ideal, you could tell that the image at
positions 1 or 2 was out of focus. But no film or
recording medium s ideal. If you look closely enough
there is always a graininess caused by the size of the
basic medium like the silverhalidecrystals in black and
white film, the width of the scan lines in an analog TV
camera, or the size of the pixels in a digital camera. If
the image of the arrow tip at position 1 is smaller than
the grain or pixel size then you cannot tell that the
picture is out of focus. You can place the recording
medium anywhere between position 1 and 2 and the
image will be as sharp as you can get.

In Figure (48b), we have drawn the rays from the same
object passing through a smaller diameter f8 lens.
Again we show by dotted lines positions 1 and 2 where
the image of the arrow point would fill the same size
circle as itdid at positions 1 and 2 for the f2 lens above.
Because the rays from the f 8 lens fill a much narrower
cone than those from thef2 lens, there is a much greater
distance between positions 1 and 2 for the f 8 lens.

| e
7 ~/ ) debth of field
f2.8 opening on film side

Figure 48a
A large diameter lens has a narrow depth of field.

\/ B
; debth of field
By on film side

Figure 48b
Reducing the effective diameter of the
lens increases the depth of field.

Photograph taken at f22.



If Figures (48) represented a camera, you would not be
concerned with moving the film back and forth. In-
stead you would be concerned with how far the image
could be moved back and forth and still appear to be in
focus. If the film were at the image position and you
then moved the object in and out, you could not move
it very far before it’s image was noticeably out of focus
with the f2 lens. You could move it much farther for
the 8 lens.

This effectisillustrated by the photographs on the right
side of Figures 48, showing a close-up tree and the
distant tower on Baker Library at Dartmouth College.
The upper picture taken at £ 5.6 has a narrow depth of
field, and the tower is well out of focus. In the bottom
picture, taken at f22, has a much broader depth of field
and the tower is more nearly in focus. (In both cases we
focused on the nearby tree bark.)

Camera manufacturers decide how much blurring of
the image is noticeable or tolerable, and then figure out
the range of distances the object can be moved and still
be acceptably in focus. This range of distance is called
the depth of field. 1t can be very short when the object
is up close and you use a wide opening like 2. It can
be quite long for a high f number like f22. The
inexpensive fixed focus cameras use a small enough
lens so that all objects are “in focus™ from about 3 feet
or 1 meter to infinity.

In the extreme limit when the lens is very small, the
depth of field is so great that everything is in focus
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Figure 48c
Camera lens. This lens is set to f11, and adjusted
to a focus of 3 meters or 10 ft. At this setting, the
depth of field ranges from 2 to 5 meters.

everywhere behind the lens. In this limit you do not
even need a lens, a pinhole in a piece of cardboard will
do. Ifenough light is available and the subject doesn’t
not move, you can get as good a picture with a pinhole
camera as one with an expensive lens system. Our
pinhole camera image in Figure (49) is a bit fuzzy
because we used too big a pinhole.

(If you are nearsighted you can see how a pinhole
camera works by making a tiny hole with your fingers
and looking at a distant light at night without your
glasses. Justlooking atthe light, it will look blurry. But
look at the light through the hole made by your fingers
and the light will be sharp. You can also see the eye
chart better at the optometrists if you look through a
small hole, but they don’t let you do that.)

Figure 49a

We made a pinhole camera by replacing
the camera lens with a plastic film case
that had a small hole poked into the end.

Figure 49b

Photograph of Baker library tower, taken with the
pinhole camera above. If we had used a smaller hole
we would have gotten a sharper focus.



Eye Glasses and a Home Lab
Experiment

When you get a prescription for eyeglasses, the optom-
elrist writes down number like -1.5, -1.8 to represent
the power of thelenses you need. Thesecryptic number
are the power of the lenses measured indiopters. What
adiopter is, is simply the reciprocal of the focal length
l/f, where fis measured in meters. A lens with a power
of 1 diopter is a converging lens with a focal length of
1 meter. Those of us who have lenses closer to -4 in
power have lenses with a focal length of —25 cm, the
minus sign indicating a diverging lens to correct for
nearsightedness as shown back in Figure (45).

If you are nearsighted and want to measure the power
of your own eyeglass lenses, you have the problem that
it is harder to measure the focal length of a diverging
lens than a converging lens. You can quickly measure
the focal length of a converging lens like a simple
magnifying glass by focusing sunlight on a piece of
paper and measuring the distance from the lens to
where the paperis starting to smoke. But youdo not get
a real image for a diverging lens, and cannot use this
simple technique for measuring the focal length and
power of diverging lenses used by the nearsighted.

As part of a project, some students used the following
method to measure the focal length and then determine
the power in diopters, of their and their friend’s eye-
glasses. They started by measuring the focal length fj
of asimple magnifying glass by focusing the sun. Then

they placed the magnifying glass and the eyeglass lens
together, measured the focal length of thecombination,
and used the formula

r_r.1
f h h
to calculate the focal length of the lens.

(30 repeated)

(Note that if you measure distances in meters, then
1/f, is the power of lens 1 in diopters and 1/f; that of
lens 2. Equation 30 tells you that the power of the
combination 1/f is the sum of the powers of the two
lenses.

Exercise 15

Assume that you find a magnifying lens that focuses the
sun at a distance of 10 cm from the lens. You then
combine that with one of your (or a friends) eyeglass
lenses, and discover that the combination focus at a
distance of 15 cm. What is the power, in diopters, of

(a) The magnifying glass.
(b) The combination.

(c) The eyeglass lens.

Exercise 16 — Home Lab

Use the above technigue to measure the power of your
or your friend’s glasses. |If you have your prescription
compare your results with what is written on the pre-
scription. (The prescriptionwill also contain information
about axis and amount of astigmatism. Thatyou cannot
check as easily.




THE EYEPIECE

When the author was a young student, he wondered
why you do not put your eye at the focal point of a
telescope mirror. Thatis where the image of a distance
object is, and that is where you put the film in order to
record the image. Youdo not put your eye at the image
because it would be like viewing an object by putting
your eyeball next to it. The object would be hopelessly
out of focus. Instead you look through an eyepiece.

The eyepiece is amagnifying glass that allows youreye
to comfortably view an image or small object up close.
For a normal eye, the least eyestrain occurs when
looking at a distant object where the light from the
object enters the eye as parallel rays. It is then that the
ciliary muscles in the eye are in a resting position. If the
image or small object is placed at the focal plane of a
lens, as shown in Figure (50), light emerges from the
lens as parallel rays. You can put your eye right up to
that lens, and view the object or image as comfortably
as you would view a distant scene.

parallel
rays

Figure 50
The evepiece or magnifier. To look at small object, or
to study the image produced by another lens or mirror,
place the image or object at the focal plane of a lens, so
that the light emerges as parallel rays that your eye can
comfortably focus upon.

———— =

Exercise 17 - The Magnifying Glass
There are three distinct ways of viewing an object
through a magnifying glass, which you should try for
yourself. Geta magnifying glass and use the letters on
this page as the object to be viewed.

(a) First measure the focal length of the lens by focusing
the image of a distant object onto a piece of paper. A
light bulb across the room or scene out the window will
do.

(b) Draw some object onthe paper, and place the paper
at least several focal lengths from your eye. Then hold
the lens about 1/2 a focal length above the object as
showninFigure (51a). Youshould now see anenlarged
image ofthe object asindicated inFigure(51a). You are
now looking at the virtual image of the object. Check
that the magnification is roughly a factor of 2x .

(c) Keeping your eye in the same position, several focal
lengths and at least 20 cm from the paper, pullthe lens
back toward your eye. The image goes out of focus
when the lens is one focal length above the paper, and
then comes back into focus upside downwhen the lens
is farther out. You are now looking at the real image as
indicated in Figure (51b). Keep your head far enough
back that your eye can focus on this real image.

Hold the lens two focal lengths above the page and
check that the inverted real image of the object looks
aboutthe same size asthe objectitself. (Asyoucansee
from Figure (51k), the inverted image should be the
same size as the object, but 4 focal lengths closer.)

virtual frease::..
image -

object

Figure 51a
Looking at the virtual image.

object i iimage

Figure 51b k

Looking at the inverfed real image.




(d) Now hold the lens one focal length above the page
and put your eye right up to the lens. You are now using
the lens as an eyepiece as shown in Figure (50). The
letters will be large because your eye is close to them,
and they will be comfortably in focus because the rays
are entering your eye as parallel rays like the rays from
adistant object. When you use the lens as an eyepiece
you are not looking at an image as you did in parts (b)
and (c) of this exercise, instead your eye is creating an
image on your retina from the parallel rays.

(e) As a final exercise, hold the lens one focal length
above a page of text, start with your eye nextto the lens,
and then move your head back. Since the lightfromthe
page isemerging from the lens as parallel rays, the size
of the letters should not change as you move your head
back. Instead what you should see is fewer and fewer
letters in the magnifying glass as the magnifying glass
itself looks smaller when farther away. This effect is
seen in Figure (52).
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Figure 52

When the lens is one focal length from the page, the
emerging rays are parallel. Thus the image letters do
not change size as we move away. Instead the lens
looks smaller, and we see fewer letters in the lens.

The Magnifier

When jewelers work on small objects like the innards
of a watch, they use what they call a magnifier which
can be a lens mounted at one end of a tube as shown in
Figure (53). The length of the tube is equal to the focal
length of the lens, so that if you put the other end of the
tube up against an object, the lens acts as an eyepiece
and light from the object emerges from the lens as
parallel rays. By placing your eye close to the lens, you
get a close up, comfortably seen view of the object.
You may have seen jewelers wear magnifiers like that
shown in Figure (54).

Figure 53
A magnifier.

Figure 54
Jeweler Paul Gross with magnifier
lenses mounted in visor.



Angular Magnification

Basically all the magnifier does is to allow you to move
the object close to your eye while keeping the object
comfortably in focus. It is traditional to define the
magnification of the magnifier as the ratio of the size
of the object as seen through the lens to the size of the
objectas youwould see it without amagnifier. By size,
we mean the angle the object subtends at youreye. This
is often called the angular magnification.

The problem with this definition of magnification is
that different people, would hold the object at different
distances in order to look at it without a magnifier. For
example, us nearsighted people would hold it a lot
closer than a person with normal vision. To avoid this
ambiguity, we can choose some standard distance like
25 cm, a standard near point, at which a person would
normally hold an object when looking at it. Then the
angular magnification of the magnifier is the ratio of
the angle 8, subtended by the object when using the
magnifier, as shown in Figure (55a), to the angle 0,
subtended by the object held at a distance of 25 cm, as
shown in Figure (53b).

angular _ O angles defined 37

magnification ~ 8,  in Figure55

Tocalculate the angularmagnification we use the small
angle approximation sin6 = 8 to get

o Y

m= from Figure 55a
B, = ¥ from Figure 55b
07 25cm
which gives
angular . ylf  25cm (38)
magnification =~ y/25cm = f

Thus if our magnifier lens has a focal length of 5 cm,
the angular magnification is 5x. Supposedly the
object will look five times bigger using the magnifier
than without it.

parallel
rays

[%

25 cm { (b)

Figure 55
The angles used in defining angular magnification.



TELESCOPES

The basic design of a telescope is to have a large lens
or parabolic mirror to create a bright real image, and
thenuseaneyepiecetoview the image. If weusealarge
lens, that lens is called an objective lens, and the
telescope is called a refracting telescope. 1f we use a
parabolic mirror, then we have a reflecting telescope.

The basic design of a refracting telescope is shown in
Figure (56). Suppose, as shown in Figure (56a), we are
looking at a constellation of stars that subtend an angle
6, as viewed by the unaided eye. The eye is directed
just below the bottom star and light from the top star
enters atan angle 6. In Figure (56b), the lens system
from the telescope is placed in front of the eye, and we
are following the path of the light from the top star in
the constellation.

The parallel rays from the top star are focused at the
focal length f; of the objective lens. We adjust the
eyepiece so that the image produced by the objective
lensis at the focal pointof the eyepiece lens, so that light
from the image will emerge from the eyepiece as
parallel rays that the eye can easily focus.

Figure 56a
The unaided eve looking at a constellation of
stars that subtend an angle 6, .

Figure 56b

Looking at the same constellation through a
simple refracting telescope. The objective lens
produces an inverted image which is viewed by
the evepiece acting as a magnifier. Note that
the parallel light from the star focuses at the

As with the magnifier, we define the magnification of
the telescope as the ratio of the size of (angle subtended
by) the object as seen through the object to the size of
(angle subtended by) the object seen by the unaided
eye. In Figure (56) we see that the constellation
subtends anangle 8 as viewed by the unaided eye. and
anangle 8; when seenthrough the telescope. Thus we
define the magnification of the telescope as
0, magnification

m = —L

(3] 0 of telescope (39)

To calculate this ratio, we note from Figure (56¢) that,
using the small angle approximation sin® =6, we
have
¥i | Y
=Rt TR
where f;; and f,, are the focal lengths of the objective
and eyepiece lens respectively. In the ratio, the image
height y; cancels and we get

(40)
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inverted  parallel
image rays

focal point of the objective lens. With the image
at the focal point of the evepiece lens, light from
the image emerges as parallel rays that are
easily focused by the eve.

Figure 56c
Relationship between the angles
6, 6., and the focal lengths.
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The same formula also applies to a reflecting telescope
with f;, the focal length of the parabolic mirror. Note
that there is no arbitrary number like 25 cm in the
formula for the magnification of a telescope because
telescopes are designed to look atdistant objects where
the angle 6, the object subtends to the unaided eye is
the same for everyone.

The first and the last of the important refracting tele-
scopes are shown in Figures (57). The telescope was
inventedinHolland in 1608 by Hans Lippershy. Shortly
after that, Galileo constructed a more powerful instru-
mentand wasthe firsttouse iteffectively in astronomy.
With a telescope like the one shown in Figure (57a), he
discovered the moons of Jupiter, a result that provided
an explicit demonstration that heavenly bodies could
orbit around something other than the earth. This
countered the long held idea that the earth was at the
center of everything and provided support for the
Copernican sun centered picture of the solar system.

When it comes to building large refracting telescopes,
the huge amount of glass in the objective lens becomes
aproblem. The 1 meter diameter refracting telescope
at the Yerkes Observatory, shown in Figure (57b), is
the largest refracting telescope ever constructed. That
was builtback in 1897. The largest reflecting telescope
is the new 10 meter telescope at the Keck Observatory
at the summit of the inactive volcano Mauna Kea in
Hawaii. Since the area and light gathering power of a
telescope is proportional to the area or the square of the
diameter of the mirror or objective lens, the 10 meter
Keck telescope is 100 times more powerful than the 1
meter Yerkes telescope.

B @IMSS- Firenze

Figure 57a
Galileo’s telescope. With such an instrument
Galileo discovered the moons of Jupiter.

Exercise 8

To build your own refracting telescope, you purchase a
3 inch diameter objective lens with a focal length of 50
cm. You want the telescope to have a magnification
m=25X%.

(a) What will be the fnumber of your telescope? (1 inch
=254 cm).

(b) What should the focal length of your eyepiece lens
be?

(c) How far behind the objective lens should the eye-
piece lens be located?

(d) Someone give you an eyepiece with a focal length
of 10 mm. Using this eyepiece, what magnification do
you get with your telescope?

(e) You notice that your new eyepiece is not in focus at
the same place as your old eyepiece. Did you have to
move the new eyepiece toward or away from the
objective lens, and by how much?

(f) Still later, you decide to take pictures with your
telescope. To do this you replace the eyepiece with a
film holder. Where do you place the film, and why did
you remove the eyepiece?

Figure 57b

The Yerkes telescope is the world’s largest refracting
telescope, was finished in 1897. Since then all larger
telescopes have been reflectors.



Reflecting telescopes

Inseveral ways, the reflecting telescope is similar to the
refracting telescope. Aswesaw back in our discussion
of parabolic mirrors, the mirror produces an image in
the focal plane when the light comes from a distant
object. This is shown in Figure (58a) which is similar
to our old Figure (4). If you want to look at the image
with an eyepiece, you have the problem that the image
is in front of the mirror where, for a small telescope,
your head would block the light coming into the scope.
Issac Newton, who invented the reflecting telescope,
solved that problem by placing a small, flat, 45°
reflecting surface inside the telescope tube to deflect
the image outside the tube as shown in Figure (58b).
There the image can easily be viewed using an eye-
piece. Newton's own telescope is shown in Figure
(58d). Another technique, used in larger telescopes, is
to reflect the beam back through a hole in the mirror as
shown in Figure (58c).

The reason Newton invented the reflecting telescope
was to avoid an effect called chromatic aberration.
When white light passes through a simple lens, differ-
ent wavelengths or colors focus at different distances
behind the lens. For example if the yellow light is in
focus the red and blue images will be out of focus. In
contrast, all wavelengths focus at the same point using
a parabolic mirror.

Figure 58d
Issac Newton’s reflecting telescope.

However, problems with keeping the reflecting surface
shinny, and the development of lens combinations that
eliminated chromatic aberration, made refracting tele-
scopes more popular until the late 1800’s. The inven-
tion of the durable silver and aluminum coatings on
glass brought reflecting telescopes into prominence in
the twentieth century.
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Figure 58a
A parabolic reflector focuses the parallel rays from a

distant object, forming an image a distance fy in

front of the mirror.
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Figure 58b

Issac Newton’s solution to viewing the image was to
deflect the beam using a 45 ° reflecting surface so that
the eyepiece could be outside the telescope tube.

secondary

> photographic film
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or eyepiece

parabolic _reﬂector/
. with hole in center
Figure 58c

For large telescopes, it is common fo reflect the
beam back through a hole in the center of the
primary mirror. This arrangement is known as
the Cassegrain design.



Large Reflecting Telescopes.

The first person to build a really large reflecting telescope
was William Hershel, who started with a two inch reflector
in 1774 and by 1789 had constructed the four foot diameter
telescope shown in Figure (59a). Among Hershel’s accom-
plishments was the discovery of the planet Uranus, and the
first observation a distant nebula. It would be another 130
years before Edwin Hubble, using the 100 inch telescope on
Mt. Wilson would conclusively demonstrate that such
nebula were in fact galaxies like our own milky way. This
also led hubble to discover the expansion of the universe.

During most of the second half of the twentieth century, the
largest telescope has been the 200 inch (5 meter) telescope
on Mt. Palomar, shown in Figure (59b). This was the first
telescope large enough that a person could work at the prime
focus, without using a secondary mirror. Hubbel himself is
seen inthe observing cage at the prime focus in Figure (59¢).

Recently it has become possible to construct mirrors larger
than 5 meters in diameter. One of the tricks is to cast the
molten glass in a rotating container and keep the container
rotating while the glass cools. A rotating liquid has a
parabolic surface. The faster the rotation the deeper the
parabola. Thus by choosing the right rotation speed, one can
casta mirror blank that has the correct parabola built in. The
surface is still a bitrough, and has to be polished smooth, but
the grinding out oh large amounts of glass is avoided. The
6.5 meter mirror, shown in Figures (59d and e), being
installed on top of Mt. Hopkins in Arizona, was built this
way. Seventeen tons of glass would have to have been
ground out if the parabola had not been cast into the mirror
blank.

Figure 59a
William Hershel’s 4 ft diameter, 40 ft long
reflecting telescope which he completed in 1789.

Figures 59b,c
The Mt. Palomar
200 inch telescope.
Below is Edwin
Hubble in the
observing cage.

Figures 59d,e

The 6.5 meter MMT
telescope atop M.
Hopkins. Above, the
mirror has not been
silvered yet. The blue
is a temporary
prolective coating.
Below, the mirror is
being hoisted into
the telescope frame.




Hubbel Space Telescope

An important limit to telescopes on earth, in their
ability to distinguish fine detail, is turbulence in the
atmosphere. Blobs of air above the telescope move
around causing the star image to move, blurring the
picture. This motion, on a time scale of about 1/60
second, is what causes stars to appear to twinkle.

The effects of turbulance, and any distortion caused by
the atmosphere, are eliminated by placing the telescope
in orbit above the atmosphere. The largest telescope in
orbit is the famous Hubble telescope with its 1.5 meter
diameter mirror, seen in Figure (60). After initial
problems with its optics were fixed, the Hubble tele-
scope has produced fantastic images like that of the
Eagle nebula seen in Figure (7-17) reproduced here.

With a modern telescope like the Keck (see next page).
the effects of atmospheric turbulance can mostly be
eliminated by having acomputer can track theimage of
a bright star. The telescopes mirror is flexible enough
that the shape of the mirror can then be be modified
rapidly and by a tiny amount to keep the image steady.

Figure 7-17

The eagle nebula, birthplace of stars. This Hubble
photograph, which apeared on the cover of Time
magazine, is perhaps the most famous.

Figure 60a
The Hubble telescope mirror. How
is that for a shaving mirror?

Figure 60b
Hubble telescope before launch.

Figure 60c
Hubble telescope being deployed.



World’s Largest Optical Telescope

Asof 1999, the largest optical telescope inthe world is the
Keck telescope located atop the Mauna Kea volcano in
Hawaii, seen in Figure (61a). Actually there are two
identical Keck telescopes as seen in the close-up, Figure
(61b). The primary mirror ineach telescope consists of 36
hexagonal mirrors fitted together as seen in Figure (61c¢)
to form a mirror 10 meters in diameter. This is twice the
diameter of the Mt. palomar mirrorwe discussed earlier.

The reason for building two Keck telescopes has to do
with the wave nature of light. As we mentioned in the
introduction to this chapter, geometrical optics works
well when the objects we are studying are large compared
to the wavelength of light. This is illustrated by the ripple
tank photographs of Figures (33-3) and (33-8) repro-
duced here. In the left hand figure, we see we see a wave
passing through a gap that is considerably wider than the
wave'’s wavelength. On the other side of the gap there is
a well defined beam with a distinct shadow. This is what
we assume light waves do in geometrical optics.

In contrast, when the water waves encounter a gap whose
width is comparable to a wavelength.as in the right hand
figure, the waves spread out on the far side. This is a
phenomenon called diffraction. We can even see some
diffraction at the edges of the beam emerging from the
wide gap.

Figures 61 a,b
The Keck telescopes atop Mauna Kea volcano in Hawaii

Diffraction also affects the ability of telescopes to form
sharpimages. The bigger the diameter of the telescope,
compared to the light wavelength, the less important
diffraction is and the sharper the image that can be
formed. By combining the output from the two Keck
telescopes, one creates a telescope whose effective
diameter, for handling diffractioneffects, isequal tothe
90 meter separation of the telescopes rather than just
the 10 meter diameter of one telescope. The great
improvementin the image sharpness thatresults is seen
in Figure (61d). On the left is the best possible image of
a star, taken using one telescope alone. When the two
telescopes are combined, they get the much sharper
image on the right.

Figures 61 ¢
The 36 mirrors forming Keck’s primary mirror. We
have emphasized the outline of the upper 4 mirrors.

Figures 33-3,8
Unless the gap
is wide in
comparison to a
wavelength,
diffraction
effects are
important.

Figures 62
Same star, photographed on the left using one scope,
on the right with the two Keck telescopes combined.



You might wonder why you have to cool an infrared
camera and not a visible light camera. The answer is
that warm bodies emit infrared radiation. The hotter the
object, the shorter the wavelength of the radiation. If an
object is hot enough, it begins to glow in visible light,
and we say that the object is red hot, or white hot. Since
you do not want the infrared detector in the camera
seeing camera walls glowing “infrared hot”, the cam-
era has to be cooled.

Not all infrared radiation can make itdown through the
earth’s atmosphere. Water vapor, for example is very
good at absorbing certain infrared wavelengths. To
observe the wavelengths that do not make it through,
infrared telescopes have been placed in orbit. Figure 65
is an artist’s drawing of the Infrared Astronomical
Satellite (IRAS) which was used to make the infrared
map of the entire sky seen in Figure (66). The map is
oriented so that the Milky Way, our own galaxy, lies
along the center horizontal plane. In visible light pho-
tographs, most of the stars in our own galaxy are
obscured by the immense amount of dust in the plane

Figure 65
Artist’s drawing of the infrared
telescope IRAS in orbit.

Figure 66

Map of the entire sky made by
IRAS. The center of the Milky
Way is in the center of the map.
This is essentially a view of our
galaxy seen from the inside.

Figure 67
Center of our galaxy, where an enormous black hole resides. Not only is
the galactic center rich in stars, but also in dust which prevents viewing
this region in visible light.

of the galaxy. But in an infrared photograph, the huge
concentration of stars in the plane of the galaxy show
up clearly.

Atthecenter of our galaxy isa gigantic black hole, with
amass of millions of suns. For a visible light telescope,
the galactic center is completely obscured by dust. But
thecentercanbeclearly seenin the infrared photograph
of Figure (67), taken by the Mt. Hopkins telescope of
Figure 64. This is not a single exposure, instead it is a
composite of thousands of images in that region of the
sky. Three different infrared wavelengths were re-
corded, and the color photograph was created by
displaying the longest wavelength image as red., the
middle wavelength as green, and the shortest wave-
length as blue. In this photograph, you not only see the
intense radiation from the region of the black hole at the
center, but also the enormous density of stars at the
center of our galaxy. (You do not see radiation from the
black hole itself, but from nearby stars that may be in
the process of being captured by the black hole.)




Radio Telescopes

The earth’s atmosphere allows not only visible and
some infrared light from stars to pass through, but also
radio waves in the wavelength range from a few millimeters
to a good fraction of a meter. To study the radio waves
emitted by stars and galaxies, a number of radio telescopes
have been constructed.

For a telescope reflector to produce a sharp image, the
surface of the reflector should be smooth and accurate to
within about a fifth of a wavelength of the radiation being
studied. For example, the surface of a mirror for a visible
wavelength telescope should be accurate to within about
10~ millimeters since the wavelength of visible light is
centered around 5 X 10~ * millimeters. Radio telescopes
that are to work with 5 millimeter wavelength radio waves,
need surfaces accurate only to about a millimeter. Tele-
scopes designed to study the important 21 cm wavelength
radiation emitted by hydrogen, can have a rougher surface
yet. As aresult, radio telescopes can use sheet metal oreven
wire mesh rather than polished glass for the reflecting
surface.

This is a good thing, because radio telescopes have to be
much bigger than optical telescopes to order to achieve
comparable images. The sharpness of an image. due to
diffraction effects, is related to the ratio of the reflector
diameter to the mdiatior} wavelength. Since the radio wave-
lengths are at least 10 ~“times larger than those for visible
light, a radio telescope has to be 10 ~times larger than an
optical telescope to achieve the same resolution.

The worlds largest radio telescope dish, shown in Figure
(68), is the 305 meter dish at the Arecibo Observatory in
Perto Rico. While this dish can see faint objects because of

it's enormous size, and has been used to make significant
discoveries, it has the resolving ability of an optical tele-
scope about 3 centimeters in diameter, or a good set of
binoculars .

As we saw with the Keck telescope, there is a great
improvement in resolving power if the images of two or
more telescopes are combined. The effective resolving
power is related to the separation of the telescopes rather
thantothe diameterof'the individual telescopes. Figure (69)
shows the Very Large Array (VLA) consisting of twenty
seven 25 meter diameter radio telescopes located in south-
ernNew Mexico. The dishes are mounted ontracks,and can
be spread out to cover an area 36 kilometers in diameter. At
this spacing, the resolving power is nearly comparable to a
5 meter optical telescope at Mt. Palomar.

Figures 69

The “Very Large Array” (VLA) of radio telescopes.
The twenty seven telescopes can be spread out to a
diameter of 36 kilometers.

Figure 68

Arecibo radio telescope. While the world’s largest
telescope dish remains fixed in the earth, the focal
point can be moved to track a star.

Figures 69b

Radio galaxy image from the VILA. Studying the
radio waves emitted by a galaxy often gives a
very different picture than visible light.



Figure 70

The Very Long Baseline Array of radio antennas. They
are located at a) Hancock New Hampshire b) Ft. Davis
Texas c) Kitt Peak Arizona d) North Liberty Iowa ¢) St.
Croix Virgin Islands f) Brewster Washington g) Mauna
Kea Hawaii h) Pie Town New Mexico i) Los Alamos
New Mexico j) Owen’s Valley California.

The Very Long Baseline Array (VLBA)

To obtain significantly greater resolving power, the
Very Long Baseline Array (VLBA) was setup in the
early 1990’s. It consists of ten 25 meter diameter radio
telescopes placed around the earth as shown in Figure
(70). When the images of these telescopes are com-
bined, the resolving power is comparable to an optical
telescope 1000 meters in diameter (or an array of
optical telescopes spread over an area one kilometer
across).

The data from each telescope is recorded on a high
speed digital tape with a time track created by a
hydrogen maser atomic clock. The tapes are brought to
a single location in Socorrow New Mexico where a
high speed computer uses the accurate time tracks to
combine the data from all the telescopes into a single
image. To do this, the computer has to correct, for
example, for the time difference of the arrival of the
radio waves at the different telescope locations.

Because of it’s high resolution, the VLBA can be used
to study the structure of individual stars. In Figure 72
we see two time snapshots of the radio emission from
the stellar atmosphere of a star 1000 light years away.
With any of the current optical telescopes, the image of
this star is only a point.

“Snapshots” of the Envelope of the Star TX Cam

24 May 1997

29 October 1998

Figure 71

Very Long Baseline Array (VLBA) radio images of the
variable star TX Cam which is located 1000 light years
away. The approximate size of the star as it would be
seen in visible light is indicated by the circle. The spols
are silicon Monoxide (SiO) gas in the star’s extended
atmosphere. Motion of the these spots trace the periodic
changes in the atmosphere of the star.

(Credit P.J. Diamond & A.J. Kembal, National Radio
Astronomy, Associated Universities, Inc.)



MICROSCOPES

Optically, microscopes like the one seen in Figure (72),
are telescopes designed to focus on nearby objects.
Figure (73) shows the ray diagram for a simple micro-
scope, where the objective lens forms an inverted
image which is viewed by an eyepiece.

To calculate the magnification of a simple microscope,
note thatif an object of height y were viewed unaided
at a distance of 25 cm, it would subtend an angle 8,
given by
Bt e Yo
0~ 25cm (42)

where throughout this discussion we will use the small
angle approximation sin6 = tan8 = 0.

A ray from the tip of the object (point A in Figure 73b),
parallel to the axis, will cross the axis at point D, the
focal point of the objective lens. Thus the height BC is
equal totheheight y, of the object, and the distance BD
is the focal length f; of the objective, and the angle B
is given by

B B E fromtriangle

7o BCD 43)

From triangle DEF, where the small angle at D is also
BB, we have

Yi from triangle

B=T ‘Der (44)

where y; is the height of the image and the distance L
is called the tube length of the microscope.

Equating the values of B in Equations 29 and 30 and
solving for y; gives

Yo i
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Theeyepieceis placed so thattheimage of the objective
is in the focal plane of the eyepiece lens, producing
parallel rays that the eye can focus. Thus the distance
EG equals the focal length f|, of the eyepiece. From
triangle EFG we find that the angle ©; that image
subtends as seen by the eye is

%

T (45)
Yi = yOf()

angle subtended

ei i i by image (46)
Substituting Equation 45 for y; in Equation 46 gives
L Yo
0.= = 47)
' fo ke

Finally, the magnification m of the microscope is equal
to the ratio of the angle 6; subtended by the image in
the microscope, to the angle 8, the object subtends at
a distance of 25 cm from the unaided eye.
0.

i Iz Yo » 1 (48)
where we used Equation 47 for 6; and Equation 42 for
8- Thedistance y cancels in Equation 48 and we get

. L % 25cm magnificationof a
- fo fe simple microscope

(Wecould have inserted aminus sign in the formula for
magnification to indicate that the image is inverted.)

(49)

m

Figure 72

Standard optical microscope, which my grandfather
purchased as a medical student in the 1890°s. Compare
this with a microscope constructed 100 years later, seen
in Figure (69) on the next page.

7% ST S— ?2> (
---------- = a)
.L 25cm
;—«—fo L
A e (tube length )
Yo/ 0% e

B

Figure 73
Optics of a simple microscope.



Scanning Tunneling Microscope

Modern research microscopes bear less resemblance to
the simple microscope described above than the Hubble
telescope does to Newton’s first reflector telescope. In
the research microscopes that can view and manipulate
individual atoms, there are no lenses based on geometri-
cal optics. Instead the surface to be studied is scanned,

a) Probe and sample holder.

b) Vacuum chamber
enclosing the probe and
sample holder. Photograph
taken in Geoff Nunes’ lab
at Dartmouth College.

Figure 74

Scanning Tunneling Microscope (STM). The tungsten
probe seen in (a) has a very sharp point, about one
atom across. With a couple of volts difference between
the probe and the silicon crystal in the sample holder,
an electric current begins to flow when the tip gets to
within about fifteen angstroms (less than fifteen atomic
diameters) of the surface. The current flows because
the wave nature of the electrons allows them to
“tunnel” through the few angstrom gap. The current
increases rapidly as the probe is brought still closer. By
moving the probe in a line sideways across the face of
the silicon, while moving the probe in and out to keep
the current constant, the tip of the probe travels at a
constant height above the silicon atoms. By recording
how much the probe was moved in and out, one gets a
recording of the shape of the surface along that line.
By scanning across many closely spaced lines, one gets
a map of the entire surface. The fine motions of the
tungsten probe are controlled by piezo crystals which
expand or contract by tiny amounts when a voltage is
applied to them. The final image you see was created by
computer from the scanning data.

line by line, by atiny probe whose operation is based on
the particle-wave nature of electrons. An image of the
surface is then reconstructed by computer and displayed
on a computer screen. These microscopes work at a
scale of distance much smaller than the wavelength of
light, a distance scale where the approximations inher-
ent in geometrical optics do not apply.

¢) Surface (111 plane) of a silicon
crystal imaged by this microscope. We
see the individual silicon atoms in the

surface




UNIT-2

Principle of Superposition of
Waves

Waves surround us and their presence works to channelize a
number of phenomena. Imagine you are in a boat and hear the
siren of a ship. In this case, you’ll be able to receive sound wave
directly from the ship siren, as well as the sound wave that gets
reflected by the seawater. In order to understand this concept, let
us put our focus on the core concept of Superposition of Waves,
together with the in-depth knowledge related to superposition
theorem.

Introduction to Superposition of Waves

Let us take the example of a string wave to define the principle of
superposition of wave that is based on the superposition theorem. And
according to this, the net displacement of any component on the string
for a given time is equal to the algebraic totality of the displacements
caused due to each wave. Hence, this method of adding up individual
waveforms for the evaluation of net waveform is termed as

the principle of superposition.



Principle of Superposition
—

—-—

The principle of superposition is expressed by affirming that
overlapping waves add algebraically to create a resultant wave. Based
on the principle, the overlapping waves (f,f.....,f,) do not hamper the
motion or travel of each other. Therefore, the wave function (y)
labelling the disturbance in the medium can be denoted as:

y =f,[x=vi+ f(x=vi)+ ..+ [ [x=0vi)

= g flx=t
=i it)
Hence, the superposition of waves can lead to the following three
effects:

1. Whenever two waves having the same frequency travel with the
same speed along the same direction in a specific medium, then
they superpose and create an effect termed as the interference of
waves.

2. In a situation where two waves having similar frequencies move with

the same speed along opposite directions in a specific medium, then
they superpose to produce stationary waves.



3. Finally, when two waves having slightly varying frequencies travel
with the same speed along the same direction in a specific medium,
they superpose to produce beats.

Learn more about

Constructive & Destructive Interference

It is when two waves (similar wavelength, amplitude, and frequency)
move in a specific or same direction. According to the superposition
principle, the subsequent wave displacement can be written as:

y(x,t) = y m sin(kx-wt) + y m sin(kx-wt+¢) = 2 y m cos(¢p/2) sin(kx-wt+¢/2)

This wave has an amplitude that depends on the phase (¢p). Hence,
when the two waves are believed to be in-phase (¢=0), then they
interfere constructively. Furthermore, the resultant wave holds twice
the amplitude as compared to the individual waves. On the other hand,
when two waves possess opposite-phase (p=180), then they interfere
destructively; canceling each other out.

Two Sine Waves Moving in Opposite Directions (Standing Wave)

Do remember that, a traveling wave propagates from one place to
another, however, a standing wave looks as if its still. Suppose two
waves (having the same amplitude, wavelength, and frequency) move in
opposite directions. Based on the principle of superposition, the final
wave amplitude can be written as:

y(x,t)=ymsin (kx-wt) + y m sin (kx+wt) = 2 y m sin (kx) cos (wt)


https://www.toppr.com/guides/physics/waves/transverse-wave-and-longitudinal-wave/

As per the superposition theorem, this wave is no longer termed as a
traveling wave since the position and time dependency has been
separated. In this, the wave amplitude as a function of point or location
is 2ymsin(kx). To be precise, this amplitude wouldn’t travel but will
stand and oscillate up and down based on cos(wt).

Two-slit interference

The prototypical example of interference is the two-slit experiment. Consider
monochromatic (single wavelength) light incident on two narrow slits as shown.
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Wave crests leaving the upper and lower slits at a given instant of time are
indicated by the violet and green lines. In the directions shown by the blue
lines, the violet and green waves rise and fall together, giving constructive
interference in those directions. Midway between those directions, the two
contributions are 180 degrees out of phase, so they tend to cancel one
another. The result is that if a screen is placed to the right, an interference
pattern is seen: there are peaks in the brightness in the direction of the blue
arrows, with dark bands in between.

To solve for the angular position of the maxima, consider two rays emited at
an angle 6 from each of the slits. The screen is assumed to be very far away
(in comparison to the distance between the slits), so the rays from to the two



slits to any given point on the screen are nearly parallel. If the distance Ax is
an integer number m of wavelengths, a bright maximum will appear on the
screen. The formula for the positions of those maxima is

dsm&=mA

wherem=0123__

;e

A second formula is needed to relate the positions on the screen to the

angle 6. The screen, the center line, and the line to an arbitrary point on the
screen form a right triangle, leading to the formula

tano=y/L

where L is the distance from the slits to the screen and y is the distance
measured on the screen from the forward direction (the central maximum).
For two-slit interference, the interference pattern is only easy to see at rather
small angles, for which it is an excellent approximation to take tan6 and

sin6 to be equal. For diffraction gratings, however, that approximation is not
necessarily adequate because pattern can be observed also at large angles.



Retardation, Interference Colors

» In anisotropic crystals, the two rays of light produced by double
refraction travel at different velocities through the crystal. It takes the
slow ray longer to traverse the crystal than it takes the fast ray. The fast
ray will have passed through the crystal and traveled some distance A
beyond the crystal before the slow ray reaches the surface of the crystal.
This distance A is called the retardation.
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» The retardation A may be calculated as follows. If t5 is the time in
seconds that it takes the slow ray to traverse the crystal and tg is the time

it takes the fast ray to traverse the crystal, then the distance A that the
fast ray travels beyond the crystal before the slow ray emerges is

A=c(t,-t) funits: m = (m/s)(s)},

where c is the velocity of light in a vacuum, which is very close to the
velocity of light in air. For a crystal of thickness h with velocities v¢ and
vs , t F and ts may be replaced by h/vr and h/vs {units: (m)/(m/s) = s},
respectively, to give




Recalling the definition of the refractive index n, the equation for A
becomes

A=h(ng-n)).

Because refractive indices are dimensionless, A will be in the same units
as h, normally nanometers (nm). Note that the difference in path length
for the O and E rays has been neglected in this calculation. In fact, for
calcite the angle is only about 5°, so the path length difference is only
about a factor of 0.005. For most other minerals the angle is much
smaller.

» The birefringence of a mineral grain is defined as the absolute value of
the difference between the refractive indices of the two rays |nS - nF| for
that grain. The maximum birefringence of a mineral is defined as the
difference 6 between the largest and smallest refractive indices for that
mineral. Because thin sections are always the same thickness (h=3000
nm), the birefringence for a mineral in a particular orientation should be
the same in all thin sections. Retardation for a particular mineral will be
greatest when the mineral is oriented so that the two rays have the
maximum and minimum refractive indices for the mineral.

* When the two rays of light emerge from an anisotropic crystal, they
will recombine (following the rules of vector addition) to produce a
resultant ray. If there were no retardation, the resultant ray would be
identical to the incident ray. No light would pass the analyzer and the
crystal would appear dark (extinct). However, retardation leads to a new
resultant that does have an electric vector component that will pass the
analyzer. If the light source is monochromatic, the crystal will appear
lighter or darker, depending on the retardation. If the light source is
polychomatic (white light), the crystal will exhibit interference colors.

» To understand the origin of interference colors, we must examine the
electric vectors at various points along a pair of light waves (emerging



from an anisotropic crystal) and the resultant light wave. If the two rays
of monochromatic light are in phase, the resultant wave will have the
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same plane of polarization as the incident wave: If the two rays of
monochromatic light are out of phase due to retardation, then the
resultant

wave will have a new orientation. If the two rays are A/2 out of phase,
the resultant will be:

* L I
time or position alnng wave —-—= I l



If the two rays are A/4 out of phase, the resultant will be circularly
polarized: * Transmission of the resultant wave when the analyzer (the
upper polarizing filter) is in place will depend on the orientation(s) of
the resultant vibration directions with respect to the orientation of the
analyzer. In most cases, some of the resultant wave is transmitted and
interference colors are observed. However, if the one of the vibration
directions of the crystal is parallel to that of the polarizer, then all of the
light will pass through the crystal maintaining the analyzer’s plane of
polarization. Because there is in effect only one ray in this case, there is
no interference when the light emerges from the crystal and, therefore,
no interference color. Extinction is the dark appearance of a crystal
between crossed polarizers when a vibration direction in the crystal is
parallel to the vibration direction of the polarizer. Anisotropic crystals
will become extinct four times as the stage of a polarizing microscope is
rotated 360°. The maximum amount of light will be transmitted by the
analyzer when stage is rotated 45° from an extinction position.

100

% Transmissio n
by analyzer

0 Y 25 3k
Retardation A

» For monochromatic light illuminating a crystal at 45° from extinction,
the intensity of the light transmitted by the analyzer as a function of the
retardation is given by this -> graph. Note that no light passes the
analyzer when the retardation is an integral number of wavelengths for



the wavelength of light used. This effect can be observed by viewing a
quartz wedge between crossed polarizers in sodium light. Retardation
for the quartz wedge increases with thickness so that a series of parallel
dark bands (for A = A, 2], etc.) can be observed.

Because the light source in our microscopes is not monochromatic, the
actual interference colors observed result from the summation of dark
bands for all visible wavelengths. The characteristic sequence of colors
as a function of retardation is shown as the chart of interference colors in
Nesse and elsewhere. You will have seen these colors on soap bubbles
and oil slicks, where they are produced by the interference of light
waves reflected off the front and back surfaces of these films. However,
in these cases no polarization or retardation is involved; the colors are
due to destructive interference of the two (out of phase) reflected rays.
Note that interference colors are not the same as the rainbow or
spectrum produced from white light by a prism or a diffraction grating.

» Retardation is a function of the mineral, its orientation, and its
thickness. If the thickness is doubled, so is the retardation. Similarly, if a
second crystal of the same mineral with the same orientation is placed
on top of the crystal being studied, the retardation will increase. In fact,
if a second crystal of any mineral is placed on top with its slow vibration
direction parallel to the slow vibration direction of the crystal being
studied, the retardation will increase. This effect is called addition of
retardation.

* Petrographic microscopes are equipped with a quartz plate designed to
be placed in the light path above the crystal with the slow vibration
direction of the quartz crystal oriented at 45° to the planes of the
polarizing filters. The slow vibration direction of the plate is indicated
on the plate by a double pointed arrow or similar mark. Use of this plate
permits identification of the slow and fast vibration directions of a
crystal by watching for addition or subtraction of the retardation. The
thickness of the quartz plate is selected to add to (or subtract from) the
retardation exactly 550 nm. Older microscopes were equipped with a



similar plate made of gypsum (of a different thickness!) that caused the
same amount (550 nm) of addition (or subtraction).

» Crystals that occur in a prismatic form may be characterized has
having the slow direction either parallel to their long dimension or
perpendicular to it. The former are called length slow and the latter
length fast. These two cases may be easily distinguished by insertion of
a quartz plate when the long direction of the mineral is 45° from the
planes of the polarizer. If the crystal has no long direction, this test is not
possible.

Length Slow Length Fast
Retardation Increases Retardation Decreases
"Addition" "Subtraction"

Lateral Shift:-

When a ray of light travels through a glass slab from air, it bends towards the normal
and when it comes out of the other side of the glass slab, it bends away from the
normal. It is found that the incident ray and the emergent ray are not along the same
straight line, but the emergent ray seems to be displaced with respect to the incident
ray. This shift in the emergent ray with respect to the incident ray is called lateral
shift or lateral displacement. The incident and the emergent rays, however, remain



parallel.

The as

diagram
o

Interference in thin films

The two rays BC and DE reflected from the top and
the bottom of the air film have a varying path G
difference along the length of the film due to
variation of the film thickness. Because ray DE . )

R Glass-to-air
travels more distance than BC. Rhnundary
Also ray DE undergoes a phase change of half
wave length (m change) occurs at the air to glass
boundary due to reflection .
The optical phase difference between the two rays
BC and DE is given by :

A=Int +4/2
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Mo n changa boundary

Figure.2
Minima occurs when the phase difference is an odd multiple of A;‘Z,th% two waves arriving
are 180° out of phase and give rise to destructive interference .Therefore ,the condition for
dark fringes, or destructive interference is:

1
a=(m+3)2
2nt =md
Because the film produced from air n=1

2t =md
The thickness of the spacer used to form the wedge shaped air film between the glass slides
can be determined using a travelling microscope .

shown:



(t )is thickness of the spacer.

(L) 18 the length of the glass piece.

(A )is the wave length of the used monochromatic light (sodium) in vacum.
(d) is the thickness of the fringe.

Procedure :
1. Set the apparatus as shown in (fig.1.a)
2. Fix the cross hair to one of the parallel fringes produced ,take the readings of
the vernier at one of the dark fringes(d0)
3. And then take the reading again after counting 20 dark fringes from the

previous one(d21)

4. Calculate d using |d = %
. Measure the length of the glass piece starting from the edge of the thin spacer
to the end of the plate (L).
6. Calculate the thickness of the plate using the following relation :
Lx2
t=
d

7.explain the shape of the fringes produced from the air wedge experiment?

Newton's rings



EQUIPMENT NEEDED

~Travelling microscope.

~ Convex lens.

~Sodium(monochromatic light) lamp with known wave length .
—Glass plate.

—~Spherometer.

-Stand.

PURPOSE

1)Explain the formation of Newton's rings .
2)Measure the wave length of the monochromatic light (Sodium).

THEORY
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Figure.3a Figure.3b

Newton's rings are formed when a plano-convex lens of large radius of curvature is
placed on a plane glass sheet. The combination forms a thin circular air film of
variable thickness in all directions around the point of contact of the lens and the glass
plate at O.

If monochromatic light is allowed to fall normally (fig.3a)on the lens using the 45°
inclined glass plate, and the film is viewed in reflected light, interference fringes are
observed in the form of a series with concentric rings( fig.3b)



when the light 1s incident on the plano-convex lens part of 12
the light incident on the system is reflected from glass-to-air

boundary (say at point D). The reminder of the light 1s

transmitted through the air film .1t 1s again reflected from

the air-to-glass boundary (say from point J)

The two rays are (1 and 2 ) reflected from the top and

bottom of the air film interfere with each other to produce p

darkness and brightness .

0
The condition For destructive interference 15 the same E
obtained from the air wedge experiment A /
AIR FILM
2t = mi Figure.4

To determine the wave length of the sodium light we use the following relation

r’ = mAR

(r) is the radius of the fringe.
(m) 1s the order of the ring.
(R) 1s the radius of curvature of the plano convex lens.

(A )is the wave length of the used monochromatic light (sodium) in vacum.



PROCEDURE
1. Turn on the sodium lamp and Adjust the apparatus so we have a parallel light
falling in the lens and the rings are seen clearly in the eyepiece of the
travelling microscope .
2. Fix the cross hair to the center ring and then move 1t to the L.H.S until you

reach the 8" dark fringe, take the reading of all the dark fringes until you reach
the other end of the 8" fringe from the R H.S.
3. Calculate the radius of each ringr

|L.HS—R.H.5|
T = ——
2

The readings should be obtained as the following:

m LHS RH.S - =
(mm) (mm)

4. Use the spherometer to measure the radius of curvature of the lens R.

I* h

RZE-FE

( h) the distance that the central leg has been moved from the readings on the
vertical scale (millimeter) and the circular scale (1/100 millimeter)

(1) the distance between the central leg and the other three legs

5. Plot the relation between r? (y-axis)and m (x-axis).
6. Calculate slope from the plot
7. Calculate the wave length

slope
A= R

8.explain the shape of the fringes produced from the Newton's rings experiment and
describe its properties .



Michelson Interferometer There are many two-beam
interferometers which allow the surfaces producing the two wavefronts
to be physically separated by a large distance . These instruments allow
the two wavefronts to travel along dif ferent optical paths . One of these
Is the Michelson interferometer diagramed in Fig . 16 a . The two
interfering wavefronts are produced by the reflections from the two
mirrors . A plate beamsplitter with one face partially silvered is used ,
and an identical block of glass is placed in one of the arms of the
interferometer to provide the same amount of glass path in each arm .
This cancels the ef fects of the dispersion of the glass beamsplitter and
allows the system to be used with white light since the optical path dif
ference is the same for all wavelengths . Figure 16 b provides a folded
view of this interferometer and shows the relative optical
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FIGURE 16 Michelson interferometer: (2) schematic view:; and (b) folded view
showing the relative optical position of the two mirrors.

position of the two mirrors as seen by the viewing screen . It should be obvious
that the two mirrors can be thought of as the two surfaces of a “‘glass’’ plate that is
illuminated by the source . In this case , the index of the fictitious plate is one , and



the reflectivity at the two surfaces is that of the mirrors . Depending on the mirror
orientations and shapes , the interferometer either mimics a plane-parallel plate of
adjustable thickness , a wedge of arbitrary angle and thickness , or the comparison
of a reference surface with an irregular or curved surface . The type of fringes that
are produced will depend on this configuration , as well as on the source used for
illumination . When a monochromatic point source is used , nonlocalized fringes
are produced , and the imaging lens is not needed .

Two virtual-source images are produced , and the resulting fringes can be
described by the interference of two spherical waves (discussed earlier) . If the
mirrors are parallel , circular fringes centered on the line normal to the mirrors
result as with a plane-parallel plate . The source separation is given by twice the
apparent mirror separation . If the mirrors have a relative tilt , the two source
Images appear to be laterally displaced , and hyperbolic fringes result . Along a
plane bisecting the source images , straight equispaced fringes are observed . When
an extended monochromatic source is used , the interference fringes are localized .
If the mirrors are parallel , fringes of equal inclination or Haidinger fringes (as
described earlier) are produced . The fringes are localized at infinity and are
observed in the rear
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FIGURE 16 (Conintied.)



focal plane of the imaging lens . Fringes of equal thickness localized at the mirrors
are generated when the mirrors are tilted . The apparent mirror separation should
be kept small , and the imaging lens should focus on the mirror surface .

If the extended source is polychromatic , colored fringes localized at the mirrors
result . They are straight for tilted mirrors . The fringes will have high visibility
only if the apparent mirror separation or OPD is smaller than the coherence length
of the source . Another way of stating this is that the order of interference m must
be small to view the colored fringes . As m increases , the fringes will wash out .
The direct analogy here is a thin film . As the mirror separation is varied , the
fringe visibility will vary . The fringe visibility as a function of mirror separation is
related to the source frequency spectrum (see under ‘‘Source Spectrum’ and
““Coherence and Interference’’) , and this interferometer forms the basis of a
number of spectrometers . This topic is further discussed in , ‘“Metrology . >> When
the source spectrum is broad , chromatic fringes cannot be viewed with the mirrors
parallel . This is because the order of interference for fringes of equal inclination is
a maximum at the center of the pattern .

An important variation of the Michelson interferometer occurs when
monochromatic collimated light is used . This is the Twyman - Green
interferometer , and is a special case of point-source illumination with the source at
infinity . Plane waves fall on both mirrors , and if the mirrors are flat , nonlocalized
equispaced fringes are produced . Fringes of equal thickness can be viewed by
imaging the mirrors onto the observation screen . If one of the mirrors is not flat ,
the fringes represent changes in the surface height . The two surfaces are compared
as in the Fizeau interferometer . This interferometer is an invaluable tool for
optical testing .

MULTIPLE BEAM INTERFERENCE Throughout the preceding discussions , we
have assumed that only two waves were being interfered . There are many
situations where multiple beams are involved . Two examples are the dif fraction
grating and a plane-parallel plate . We have been ignoring multiple reflections |,
and in some instances these extra beams are very important . The net electric field
is the sum of all of the component fields . The two examples noted above present
dif ferent physical situations : all of the interfering beams have a constant intensity
with a dif fraction grating , and the intensity of the beams from a plane-parallel
plate decreases with multiple reflections



Diffraction Grating

A diffraction grating can be modeled as a series of equispaced slits, and the analysis bears a
strong similarity to the Young's double slit (discussed earlier). It operates by division of
wavefront, and the geometry is shown in Fig. 17. The slit separation is d, the OPD between
successive beams for a given observation angle 8 is d sin (#), and the corresponding phase
difference Ad = 2md sin (@)/A. The field due to the nth slit at a distant observation point is

E (@) = Aghi-has i=12..., N (55)
where all of the beams have been referenced to the first slit, and there are N total slits. The
net field is

& N
E(6) = E(8) =AY (&) (56)

F=1 F=1

a

l

OPD

FIGURE 17 Diffraction grating: multiple-beam interference by
division of wavefront.
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FIGURE 18 The interference patterns produced by gratings with 2 and 5 slits.

which simplifies to

' SNAS,

E(6) = A — ) (57)

The resulting intensity is

sin? ‘NAd <in? Nnd sin (0)
) -
18)= k| —3 ==k —sm!(”‘“?"‘e’) (58)

where I, is the intensity due to an individual slit.

This intensity pattern is plotted in Fig. 18 for & = 5. The result for N = 2, which is the
double-slit experiment, is also shown. The first thing to notice is that the locations of the
maxima are the same, independent of the number of slits. A maximum of intensity is
obtained whenever the phase difference between adjacent slits is a multiple of 2x. These
maxima occur at the diffraction angles given by

sin (8) ="'—: (59)
i

where m is an integer. The primary difference between the two patterns is that with
multiple slits, the intensity at the maximum increases to N times that due to a single slit,
and this energy is concentrated into a much narrower range of angles. The full width of a
diffraction peak between intensity zero corresponds to a phase difference Ady of 4m/N.

The number of intensity zeros between peaks is N 2 1 . As the number of slits
increases , the angular resolution or resolving power of the grating greatly
increases . The ef fects of a finite slit width can be added by replacing 10 in Eq .



(58) by the single-slit dif fraction pattern . This intensity variation forms an
envelope for the curve in Fig .
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UNIT-3

Diffraction and the Wave Theory of Light In Chapter 35 we defined diffraction rather loosely as
the flaring of light as it emerges from a narrow slit. More than just flaring occurs, however,
because the light produces an interference pattern called a diffraction pattern. For example,
when monochromatic light from a distant source (or a laser) passes through a narrow slit and is
then intercepted by a viewing screen, the light produces on the screen a diffraction pattern like
that in Fig. 36-1. This pattern consists of a broad and intense (very bright) central maximum plus




a number of narrower and less intense maxima (called secondary or side maxima) to both sides.
In between the maxima are minima. Light flares into those dark regions, but the light waves
cancel out one another. Such a pattern would be totally unexpected in geometrical optics: If
light traveled in straight lines as rays, then the slit would allow some of those rays through to
form a sharp rendition of the slit on the viewing screen instead of a pattern of bright and dark
bands as we see in Fig. 36-1. As in Chapter 35, we must conclude that geometrical optics is only
an approximation. Diffraction is not limited to situations when light passes through a narrow
opening (such as a slit or pinhole). It also occurs when light passes an edge, such as the edges of
the razor blade whose diffraction pattern is shown in Fig. 36-2. Note the lines of maxima and
minima that run approximately parallel to the edges, at both the inside edges of the blade and
the outside edges. As the light passes, say, the vertical edge at the left, it flares left and right and
undergoes interference, producing the pattern along the left edge. The rightmost portion of that
pattern actually lies behind the blade, within what would be the blade’s shadow if geometrical
optics prevailed.

You encounter a common example of diffraction when you look at a clear blue
sky and see tny specks and hairlike struetures foating in your view. These floaters, as
they are called, are produced when hght passes the edges of tiny deposits n the vit-
reous humor, the transparent matenial filling most of the eyeball. What you are see-
ing when a floater is in vour field of vision 15 the diffraction pattern produced on the
retina by one of these deposits. If you sight through a pinhole in a picce of cardboard
s0 as to make the light entening your eye approximately a plane wave, you can dis-
tinguish individual maxima and minima in the patterns. L

Diffraction is a wave effect. That is, it occurs because light i1s a wave and it
oceurs with other types of waves as well. For example, vou have probably seen
diffraction 1n action at football games. When a cheerleader near the playing
ficld yells up at several thousand nosy fans, the vell can hardly be heard because
the sound waves diffract when they pass through the narrow opening of the
cheerleader’s mouth. Thas flaring leaves hittle of the waves travehng toward the

Fig. 36-2 The diffraction pattern
produced by a razor blade in mono-
chromatic light. Note the lines of

alternating maximum and minimum

fans in front of the cheerleader. To offset the diffraction, the cheerleader can yell intensity. (Ken KawFundamental
through a megaphone. The sound waves then emerge from the much wider open- p}..,:,mg}ﬂp,'m ’

ing at the end of the megaphone. The flaring is thus reduced, and much more of

the sound reaches the fans in front of the cheerleader. L

The Fresnel Bright Spot Diffraction finds a ready explanation in the wave theory of light.
However, this theory, originally advanced in the late 1600s by Huygens and used 123 years later
by Young to explain double-slit interference, was very slow in being adopted, largely because it
ran counter to Newton’s theory that light was a stream of particles. Newton’s view was the
prevailing view in French scientific circles of the early 19th century, when Augustin Fresnel was a
young military engineer. Fresnel, who believed in the wave theory of light, submitted a paper to
the French Academy of Sciences describing his experiments with light and his wave-theory
explanations of them. In 1819, the Academy, dominated by supporters of Newton and thinking
to challenge the wave point of view, organized a prize competition for an essay on the subject of
diffraction. Fresnel won. The Newtonians, however, were not swayed. One of them, S. D.
Poisson, pointed out the “strange result” that if Fresnel’s theories were correct, then light waves
should flare into the shadow region of a sphere as they pass the edge of the sphere, producing a
bright spot at the center of the shadow. The prize committee arranged a test of Poisson’s
prediction and discovered that the predicted Fresnel bright spot, as we call it today, was indeed
there (Fig. 36-3). Nothing builds confidence in a theory so much as having one of its unexpected
and counterintuitive predictions verified by experiment.



Fig. 36-3 A photograph of the
diffraction pattern of a disk. Note the con-
centric diffraction rings and the Fresnel
bright spot at the center of the pattern. This
experiment is essentially identical to that
arranged by the committee testing Fresnel's
theories, because both the sphere they used
and the disk used here have a cross section
with a circular edge. (Jear! Walker)

Diffraction by a Single Slit: Locating the Minima Let us now examine the diffraction pattern of
plane waves of light of wavelength | that are diffracted by a single long, narrow slit of width a in
an otherwise opaque screen B, as shown in cross section in Fig. 36-4. (In that figure, the slit’s
length extends into and out of the page, and the incoming wavefronts are parallel to screen B.)
When the diffracted light reaches viewing screen C, waves from different points within the slit
undergo interference and produce a diffraction pattern of bright and dark fringes (interference
maxima and minima) on the screen. To locate the fringes, we shall use a procedure somewhat
similar to the one we used to locate the fringes in a two-slit interference pattern. However,
diffraction is more mathematically challenging, and here we shall be able to find equations for
only the dark fringes. Before we do that, however, we can justify the central bright fringe seen
in Fig. 36-1 by noting that the Huygens wavelets from all points in the slit travel about the same
distance to reach the center of the pattern and thus are in phase there.As for the other bright
fringes, we can say only that they are approximately halfway between adjacent dark fringes. To
find the dark fringes, we shall use a clever (and simplifying) strategy that involves pairing up all
the rays coming through the slit and then finding what conditions cause the wavelets of the rays
in each pair to cancel each other. We apply this strategy in Fig. 36-4 to locate the first dark
fringe, at point P1. First, we mentally divide the slit into two zones of equal widths a/2. Then we
extend to P1 a light ray r1 from the top point of the top zone and a light ray r2 from the top
point of the bottom zone. We want the wavelets along these two rays to cancel each other
when they arrive at P1. Then any similar pairing of rays from the two zones will give
cancellation.A central axis is drawn from the center of the slit to screen C, and P1 is located at
an angle u to that axis. The wavelets of the pair of rays rl and r2 are in phase within the slit
because they originate from the same wavefront passing through the slit, along the width of the
slit. However, to produce the first dark fringe they must be out of phase by I/2 when they reach
P1; this phase difference is due to their path length difference, with the path traveled by the
wavelet of r2 to reach P1 being longer than the path traveled by the wavelet of r1.To display this
path length difference, we find a point b on ray r2 such that the path length from b to P1
matches the path length of ray r1. Then the path length difference between the two rays is the
distance from the center of the slit to b.
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When viewing screen C is near screen B, as in Fig. 36-4, the diffraction
pattern on C is difficult to describe mathematically. However, we can simplify the
mathematics considerably if we arrange for the screen separation D to be much
larger than the slit width a. Then we can approximate rays r, and r, as being
parallel, at angle #to the central axis (Fig. 36-3). We can also approximate the tri-
angle formed by point b, the top point of the slit, and the center point of the slit as
being a right triangle. and one of the angles inside that triangle as being 8 The
path length difference between rays r; and r; (which is still the distance from the
center of the slit to point b) is then equal to (a/2) sin 8.

We can repeat this analysis for any other pair of rays originating at cor-
responding points in the two zones (say, at the midpoints of the zones) and
extending to point £,. Each such pair of rays has the same path length difference
(@/2) sin A. Setting this common path length difference equal to A/2 (our condition
for the first dark fringe), we have

a . _ A
Esm f= ?
which gives us

asin #= A (first minimum). {36-1)

This pair of rays cancel
p, each other at Py. So
do all such pairings.

Fy

This path length

difference shifts
Path length
difference one wave from the
other, which
determines

the interference.

Fig. 36-5 For D = a,we can approxi-
mate rays r, and ¢y as being parallel, at an-
gle #to the central axis.



Given slit width & and wavelength A, Eq. 36-1 tells us the angle # of the first dark
fringe above and (by symmetry) below the central axis.

Note that if we begin with a = A and then narrow the slit while holding the
wavelength constant, we increase the angle at which the first dark fringes appear;
that is, the extent of the diffraction (the extent of the flaring and the width of the
patiern) is greater for a narrower slit. When we have reduced the shit width to the
wavelength (that is, a = A), the angle of the first dark fringes is 90°. Since the first
dark fringes mark the two edges of the central bright fringe, that bright [ringe
must then cover the entire viewing screen.

We find the second dark fringes above and below the central axis as we
found the first dark fringes, except that we now divide the slit into four zones of
equal widths a/d, as shown in Fig. 36-6a. We then extend rays ry, ry, 1y, and r
from the top points of the zones to point £;, the location of the second dark
fringe above the central axis. To produce that fringe, the path length difference

" To see the cancellation,
group the rays into pairs.

Path length
difference between
ry and

cancel at Py.
.L i

Path length
difference between
Ty and L

! |
Incident =1
wave I

() ] L]

Fig. 36-6 (a) Waves from the top points of four zones of width a/4 undergo fully destructive
interference at point P2. (b) For D a, we can approximate rays r1,r2,r3, and r4 as being parallel,
at angle u to the central axis.



between rp and r., that between r- and r;, and that between r; and ry must all be
equal to A2,

For [ = a, we can approximalte these four rays as being parallel, at angle
810 the central axis. To display their path length differences, we extend a per-
pendicular line through each adjacent pair of rays, as shown in Fig. 36-6b, 10
form a series of right triangles, each of which has a path length difference as
one side. We see {rom the top triangle that the path length difference between
ry and r; 18 (a/4) sin A Similarly, from the bottom triangle, the path length dif-
ference between r; and ry 15 also (a/4) sin & In fact, the path length difference
for any two rays thatl originate al corresponding points in two adjacent zones
is (@/4) sin & Since in each such case the path length difference is equal 1o A2,
we have

a . A
Tsm f= 3
which gives us
asin = 2A (second minimum). (36-2)

We could now continue to locate dark fringes in the diffraction pattern by
splitting up the slit into more zones of equal width. We would always choose an
even number of zones so that the zones (and their waves) could be paired as we
have been doing. We would find that the dark fringes above and below the central
axis can be located with the general equation

a sin 8 = ma. form=1,2,3,. .. (minima—dark fringes). (36-3)

You can remember this result in the following way. Draw a triangle like the
one in Fig. 36-5, but for the full slit width a, and note that the path length differ-
ence between the top and bottom rays equals a sin & Thus, Eq. 36-3 says:

This may seem to be wrong because the waves of those two particular rays will be
exactly in phase with each other when their path length difference is an integer
number of wavelengths. However, they each will still be part of a pair of waves
that are exactly out of phase with each other: thus, each wave will be canceled by
some other wave. resulting in darkness. (Two light waves that are exactly out of
phase will always cancel each other, giving a net wave of zero, even if they happen
to be exactly in phase with other light waves.)

Equations 36-1, 36-2, and 36-3 are derived for the case of D = a. However,
they also apply if we place a converging lens between the slit and the viewing
screen and then move the screen in so that it coincides with the focal plane of
the lens. The lens ensures that rays which now reach any point on the screen are
exactly parallel (rather than approximately) back at the slit. They are like the
initially parallel rays of Fig. 34-14a that are directed to the focal point by a con-
verging lens.



Sample Problem

Single-slit diffraction pattern with white light

A slit of width a 15 illuminated by white light.

(a) For what value of a will the first minimum for red light
of wavelength A = 650 nm appear at § = 15°7

KEY IDEA

Diffraction occurs separately for each wavelength in the
range of wavelengths passing through the slit, with the lo-
cations of the minima for each wavelength given by Eg.
36-3 (asin # = mA).

Calculation: When we set m = 1 (for the first minimum)
and substitute the given values of #and A, Eq.36-3 yields

mA _ (1)(h50 nm)
sinf sinl5°

= 2511 nm = 2.5 pm.
For the inaident light to flare out that much ( £15° to the first min-
ma) the slit has to be very fine indeed — i this case, a mere four
times the wavelength. For comparson, note that a fine human
hair may be about 100 gm in diameter.

(b) What is the wavelength A’ of the light whose first side
diffraction maximum is at 15, thus coinciding with the first
minimum for the red light?

(Answer)

KEY IDEA

The first side maximum for any wavelength is about halfway
between the first and second minima for that wavelength.
Calculations: Those first and second minima can be
located with Eq. 36-3 by setting m = 1 and m = 2, respec-
tively. Thus, the first side maximum can be located
approximately by setting m = 1.5.Then Eq. 36-3 becomes
asin = 151"
Solving for A" and substituting known data yield

Az = asin # (2511 nm)(sin 15%)
1.5 1.5

= 430 nm.

(Answer)

Light of this wavelength is violet (far blue, near the short-
wavelength limit of the human range of visible light). From
the two equations we used, can you see that the first side
maximum for light of wavelength 430 nm will always coin-
cide with the first minimum for light of wavelength
650 nm, no matter what the slit width is? However, the an-
gle ¢ at which this overlap ocecurs does depend on slit
width. If the slit is relatively narrow, the angle will be rela-
tively large, and conversely.

36-4 Intensity in Single-Slit Diffraction, Qualitatively

In Section 36-3 we saw how to find the positions of the minima and the maxima in
a single-slit diffraction pattern. Now we turn to a more general problem: find an
expression for the intensity [ of the pattern as a function of & the angular position
of a point on a viewing screen.

To do this, we divide the slit of Fig. 36-4 into &V zones of equal widths Ax small
enough that we can assume each zone acts as a source of Huygens wavelets. We
wish Lo superimpose the wavelets arriving at an arbitrary point F on the viewing
screen, at angle # to the central axis, so that we can determine the amplitude E; of
the electric component of the resultant wave at P. The intensity of the light at Pis
then proportional to the square of that amplitude.

To find E,, we need the phase relationships among the arriving wavelets. The
phase difference between wavelets from adjacent zones is given by

phase | _ 2_11') path lcnglh)

difference A difference [
For point P at angle 8, the path length difference between wavelets from adjacent
zones is Ax sin & 50 the phase difference Ad between wavelets from adjacent zones is

Ad = (i—”) (Ax sin 6). (36-4)



36-5 Intensity in Single-Slit Diffraction, Quantitatively

Equation 36-3 tells us how to locate the minima of the single-slit diffraction pat-
tern on screen C of Fig. 36-4 as a function of the angle # in that figure. Here we
wish to derive an expression for the intensity I(#) of the pattern as a function of
8. We state, and shall prove below, that the intensity is given by

10) = J,,,( o ) (36-5)

where a=3¢= %sin A. (36-6)

The symbol « is just a convenient connection between the angle # that locates a
point on the viewing screen and the light intensity {(#) at that point. The intensity
1, 18 the greatest value of the intensities [{#) in the pattern and occurs at the cen-
tral maximum (where 8 = 0), and ¢ is the phase difference (in radians) between
the top and bottom rays from the slit of width a.

Study of Eq. 36-3 shows that intensity minima will occur where

a = m, form=1,23,.... (36-7)
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Fig. 36-8 The relative intensity in
single-slit diffraction for three values
of the ratio a/A. The wider the slit is,
the narrower is the central diffrac-
Lion maximum.

If we put this result into Eq. 36-6, we find
m7r=%sinﬂ, form=1,2,3,...,

or asin @ = mA, form=123.... (minima—dark fringes), (36-8)

which is exactly Eq. 36-3, the expression that we derived earlier for the location
of the minima.

Figure 36-8 shows plots of the intensity of a single-slit diffraction pattern,
calculated with Eqs. 36-5 and 36-6 for three slit widths:a = A,a = 5A, and a =
10A. Note that as the slit width increases (relative to the wavelength), the width
of the central diffraction maximum (the central hill-like region of the graphs)
decreases; that is, the light undergoes less flaring by the slit. The secondary max-
ima also decrease in width (and become weaker). In the limit of slit width a be-
ing much greater than wavelength A, the secondary maxima due to the slit disap-
pear; we then no longer have single-slit diffraction (but we still have diffraction
due to the edges of the wide slit, like that produced by the edges of the razor
blade in Fig. 36-2).

Proof of Eqs. 36-5 and 36-6

To find an expression for the intensity at a point in the diffraction pattern,
we need to divide the slit into many zones and then add the phasors corre-
sponding to those zones, as we did in Fig. 36-7. The arc of phasors in Fig. 36-9
represents the wavelets that reach an arbitrary point P on the viewing screen
of Fig. 36-4, corresponding to a particular small angle @. The amplitude E, of
the resultant wave at P is the vector sum of these phasors. If we divide the
slit of Fig. 36-4 into infinitesimal zones of width Ax, the arc of phasors in Fig.
36-9 approaches the arc of a circle; we call its radius R as indicated in that
figure. The length of the arc must be E,,. the amplitude at the center of the
diffraction pattern, because if we straightened out the arc we would have the
phasor arrangement of Fig. 36-7a (shown lightly in Fig. 36-9).

The angle ¢ in the lower part of Fig. 36-9 is the difference in phase between
the infinitesimal vectors at the left and right ends of arc E,,. From the geometry, ¢
is also the angle between the two radii marked R in Fig. 36-9. The dashed line in
that figure, which bisects ¢, then forms two congruent right triangles. From either

triangle we can write
1 Ey
L = 36-9
sin 5¢b 2 (. )



In radian measure, ¢ is (with £, considered to be a circular arc)
£y
TR
Solving this equation for R and substituting in Eq.36-9 lead to
L
1
3%
In Section 33-5 we saw that the intensity of an electromagnetic wave is pro-
portional to the square of the amplitude of its electric field. Here, this means that
the maximum intensity /,, (which occurs at the center of the diffraction pattern)

is proportional to E2, and the intensity I(#) at angle #1is proportional to E3. Thus,
we may write

E,= sin 1¢b. (36-10)

Fig. 36-9 A construction used to ﬁ — E_f (36-11)
caleulate the intensity in single-slit l',,. E,a

diffraction. The situation shown

corresponds to that of Fig. 36-7h. Substituting for £, with Eq.36-10 and then substituting « = %t_ﬂl, we are led to the

following expression for the intensity as a function of #:
sin e \*
1(6) = L, -
14

This is exactly Eq. 36-5, one of the two equations we set out to prove.

The second equation we wish to prove relates a to #. The phase difference ¢
between the rays from the top and bottom of the entire slit may be related to a
path length difference with Eq. 36-4: it tells us that

2w .
b= (T) (a sin #),

where a is the sum of the widths Ax of the infinitesimal zones. However, ¢ = 2a,
so this equation reduces to Eq. 36-6.

Two wavelengths, 650 and 430 nm, are used separately in a single-slit diffraction experi-
ment. The figure shows the results as graphs of intensity f versus angle # for the two dif-
fraction patterns. If both wavelengths are then used simultaneously, what color will be
seen in the combined diffraction pattern at (a) angle A and (b) angle B?

I
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Sample Problem

Intensities of the maxima in a single-slit interference pattern

Find the intensities of the first three secondary maxima (side
maxima) in the single-slit diffraction pattern of Fig. 36-1,
measured as a percentage of the intensity of the central
maximum.

KEY IDEAS

The secondary maxima lie approximately halfway between
the minima, whose angular locations are given by Eq. 36-7
(e = mar). The locations of the secondary maxima are then

intensities at those maxima, we get

. : . 1 \2
! =(§m_") =(M) form=1,2,3

Z a (m + %}71'

The first of the secondary maxima occurs for m = 1, and its
relative intensity is

L (sin(l + %}77)2 a (sin 1.5:1—)2
L, \ (1+)= 157

'

given (approximately) by

a=(m+3Hm

form=1,2,3,...,

=450 X 107? = 4.5%.
Form = 2 and m = 3 we find that

(Answer)

with « in radian measure. We can relate the intensity [ at

I, L
any point in the diffraction pattern to the intensity /,, of the g - LB and o= 800

central maximum via Eq. 36-5.

Calculations: Substituting the approximate values of « for
the secondary maxima into Eq. 36-5 to obtain the relative

Fig. 36-10 The dilfraction pattern ol a
circular aperture. Note the central maxi-
mum and the circular secondary maxima.
The figure has been overexposed to bring
out these secondary maxima, which are
much less intense than the central maxi-
mum. (Jear! Walker)

(Answer)
As you can see from these results, successive secondary
maxima decrease rapidly in intensity. Figure 36-1 was delib-
erately overexposed to reveal them.

36-6 Diffraction by a Circular Aperture

Here we consider diffraction by a circular aperture —that is, a circular opening,
such as a circular lens, through which light can pass. Figure 36-10 shows the image
formed by light from a laser that was directed onto a circular aperture with a very
small diameter. This image 1s not a point, as geometrical optics would suggest, but
a circular disk surrounded by several progressively fainter secondary rings.
Comparison with Fig. 36-1 leaves little doubt that we are dealing with a diffrac-
tion phenomenon. Here, however, the aperture is a circle of diameter d rather
than a rectangular slit.

The (complex) analysis of such patterns shows that the first minimum for the
diffraction pattern of a circular aperture of diameter d 1s located by

. A
sin = 1.22 —

y (36-12)

(first minimum— circular aperture ).

The angle # here is the angle from the central axis to any point on that (circular)
minimum. Compare this with Eq. 36-1,
. A
sin # = —  (first minimum —single slit), (36-13)
a
which locates the first minimum for a long narrow shit of width a. The main differ-
ence is the factor 1.22, which enters because of the circular shape of the aperture.



Fig. 36-11 At the top, the images
of two point sources (stars) formed
by a converging lens. At the bottom,
representations of the image intensi-
ties. In (@) the angular separation of
the sources is too small for them to be
distinguished, in (b) they can be mar-
ginally distinguished, and in (c) they
are clearly distinguished. Rayleigh's
criterion is satisfied in (b), with the
central maximum of one diffraction
pattern coinciding with the first
minimum of the other.

Resolvability

The fact that lens images are diffraction patterns is important when we wish to
resolve (distinguish) two distant point objects whose angular separation is small.
Figure 36-11 shows, in three different cases, the visual appearance and corre-
sponding intensity pattern for two distant point objects (stars, say) with small
angular separation. In Figure 36-1la, the objects are not resolved because of
diffraction: that is, their diffraction patterns (mainly their central maxima) overlap
so much that the two objects cannot be distinguished from a single point object. In
Fig. 36-11b the objects are barely resolved, and in Fig. 36-11c they are fully resolved.

In Fig. 36-11b the angular separation of the two point sources is such that the
central maximum of the diffraction pattern of one source is centered on the first
minimum of the diffraction pattern of the other, a condition called Rayleigh’s
criterion for resolvability. From Eq. 36-12, two objects that are barely resolvable

by this criterion must have an angular separation # of

on = sin 1 L22A

d

Since the angles are small, we can replace sin g with #; expressed in radians:

A
1.2 —

- (36-14)

(Rayleigh's criterion).



Applying Rayleigh’s criterion for re-
solvability to human vision is only an
approximation because visual resolvabil-
ity depends on many factors, such as the
relative brightness of the sources and
their surroundings, turbulence in the air
between the sources and the observer,
and the functioning of the observer’s
visual system. Experimental results show
that the least angular separation that can
actually be resolved by a person is gener-
ally somewhat greater than the value
given by Eq. 36-14. However, for calcula-
tions here, we shall take Eq. 36-14 as
being a precise criterion: If the angular
separation @ between the sources is
greater than g, we can visually resolve
the sources:if it is less, we cannot.

Rayleigh’s criterion can explain the
arresting illusions of color in the style of

X 5 BE Fig. 36-12 The pointillistic painting The Seine at Herblay by Maximilien Luce consists
painting l_mown an p(_)ln‘tlllls-m (Fig. 36- of thousands of colored dots. With the viewer very close to the canvas, the dots and their
12) In this style, a‘palmmg is made not true colors are visible. At normal viewing distances, the dots are irresolvable and thus
with brush strokes in the usual sense but  plend. (Maximilien Luce, The Seine at Herblay, 1890. Musee d’Orsay, Paris, France. Photo
rather with a myriad of small colored by Erich Lessing/Art Resource)

dots. One fascinating aspect of a pointil-

listic painting is that when you change your distance from it, the colors shift in sub-
tle, almost subconscious ways. This color shifting has to do with whether you can re-
solve the colored dots. When vou stand close enough to the painting, the angular
separations # of adjacent dots are greater than # and thus the dots can be seen in-
dividually. Their colors are the true colors of the paints used. However, when vou
stand far enough from the painting, the angular separations # are less than # and
the dots cannot be seen individually. The resulting blend of colors coming into your
eye from any group of dots can then cause your brain to “make up™ a color for that
group—a color that may not actually exist in the group. In this way, a pointillistic
painter uses your visual system to create the colors of the art.

When we wish to use a lens instead of our visual system to resolve objects of small
angular separation, it is desirable to make the diffraction pattern as small as possible.
According to Eq. 36-14, this can be done either by increasing the lens diameter or by
using light of a shorter wavelength. For this reason ultraviolet light is often used with
microscopes because its wavelength is shorter than a visible light wavelength.



Sample Problem

Pointillistic paintings use the diffraction of your eye

Figure 36-13a is a representation of the colored dots on a
pointillistic painting. Assume that the average center-
to-center separation of the dots is D = 2.0 mm. Also assume
that the diameter of the pupil of your eye is d = 1.5 mm and
that the least angular separation between dots you can
resolve is set only by Rayleigh's criterion. What is the least
viewing distance from which you cannot distinguish any
dots on the painting?

KEY IDEA

Consider any two adjacent dots that you can distinguish
when you are close to the painting. As you move away, you
continue to distinguish the dots until their angular separa-
tion @ (in your view) has decreased to the angle given by

. Ohserver

oD .

D

@ O
—

13
{a)

Fig. 36-13 (a) Representation of some dots on a pointillis-
tic painting, showing an average center-to-center separation
D_(b) The arrangement of separation [ between two dots,
their angular separation 6, and the viewing distance L.

o]

Rayleigh's criterion:

_ A
b = 122
Calculations: Figure 36-13b shows, from the side, the angular
separation # of the dots, their center-to-center separation D,
and your distance L from them. Because [)/L is small, angle #
is also small and we can make the approximation

(36-15)

(36-16)

Setting # of Eq. 36-16 equal to # of Eq. 36-15 and solv-
ing for L, we then have
Dd
1.228°

Equation 36-17 tells us that L is larger for smaller A. Thus, as
you move away from the painting, adjacent red dots (long
wavelengths) become indistinguishable before adjacent
blue dots do. To find the least distance L at which no colored
dots are distinguishable, we substitute A = 400 nm (blue or
violet light) into Eq. 36-17:

(20X 10 m)(1.5 X 103 m)
(1.22)(400 X 10°m)
At this or a greater distance, the color you perceive at

any given spot on the painting 1s a blended color that may
not actually exist there.

L= (36-17)

= 6.1 m. (Answer)

Sample Problem

Rayleigh’s criterion for resolving two distant objects

A circular converging lens, with diameter d = 32 mm and
focal length f= 24 cm, forms images of distant point
objects in the focal plane of the lens. The wavelength is
A = 550 nm.

(a) Considering diffraction by the lens, what angular sepa-
ration must two distant point objects have to satisfy
Rayleigh'’s criterion?

KEY IDEA

Figure 36-14 shows two distant point objects P; and P,,
the lens, and a viewing screen in the focal plane of the
lens. It also shows, on the right, plots of light intensity /
versus position on the screen for the central maxima of
the images formed by the lens. Note that the angular sepa-
ration 6, of the objects equals the angular separation 6, of the
images. Thus, if the images are to satisfy Rayleigh’s criterion

Focal-plane
screen

80
2

|2

f——

Fig. 36-14 Light from two distant point objects P,
and P, passes through a converging lens and forms im-
ages on a viewing screen in the focal plane of the lens.
Only one representative ray from each object is
shown. The images are not points but diffraction pat-
terns, with intensities approximately as plotted at the
right. The angular separation of the objects is 8, and
that of the images is 6 the central maxima of the im-
ages have a separation Ax.



for resolvability, the angular separations on both sides of the (1) What is the separation Ax of the centers of the images in the
lens must be given by Eq.36-14 (assuming small angles). focal plane? (That is, what is the separation of the central peaks

Calculations: From Eq.36-14. we obtain

A
6,=6=0 =12

(1.22)(550 X 10~ m)
2Xx10°m

in the two intensity-versus-position curves?)

Calculations: From either triangle between the lens and
the screen in Fig. 36-14, we see that tan 6,/2 = Ax/2f.
Rearranging this equation and making the approximation

= =21 X 105 rad. (Answer) fané= 0 we find Ax = £ (36-18)

At this angular separation, each central maximum in the

where 6, is in radian measure. Substituting known data then

two intensity curves of Fig. 36-14 is centered on the first ~ Yields

minimum of the other curve.
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Fig. 36-18 Anidealized diffraction
grating, consisting of only five rulings,
that produces an interference pattern
on a distant viewing sereen C

Ax = (024 m)(2.1 X 10 *rad) = 5.0 pm. (Answer)

PL ‘ !°§ Additional examples, video, and practice available at WileyPLUS

36-8 Diffraction Gratings

One of the most useful tools in the study of light and of objects that emit and
absorb light is the diffraction grating. This device is somewhat like the double-slit
arrangement of Fig. 35-10 but has a much greater number N of slits, often called
rulings, perhaps as many as several thousand per millimeter. An idealized grating
consisting of only five slits is represented in Fig. 36-18. When monochromatic light
is sent through the slits, it forms narrow interference fringes that can be analyzed
to determine the wavelength of the light. (Diffraction gratings can also be opaque
surfaces with narrow parallel grooves arranged like the slits in Fig. 36-18. Light
then scatters back from the grooves to form interference fringes rather than being
transmitted through open slits.)

With monochromatic light incident on a diffraction grating, if we gradually
increase the number of slits from two to a large number N, the intensity plot
changes from the typical double-slit plot of Fig. 36-15¢ to a much more compli-
cated one and then eventually to a simple graph like that shown in Fig. 36-19a. The
pattern you would see on a viewing screen using monochromatic red light from,
say, a helium-neon laser is shown in Fig. 36-195. The maxima are now very narrow
(and so are called lines); they are separated by relatively wide dark regions.

We use a familiar procedure to find the locations of the bright lines on the
viewing screen. We first assume that the screen is far enough from the grating so
that the rays reaching a particular point P on the screen are approximately par-
allel when they leave the grating (Fig. 36-20). Then we apply to each pair of
adjacent rulings the same reasoning we used for double-slit interference. The sep-
aration d between rulings is called the grating spacing. (If N rulings occupy a total
width w, then d = w/N.) The path length difference between adjacent rays is again
d sin # (Fig. 36-20), where #is the angle from the central axis of the grating (and of
the diffraction pattern) to point P. A line will be located at P if the path length dif-
ference between adjacent rays is an integer number of wavelengths —that is, if
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Fig. 36-12 (a) The intensity plot
produced by a diffraction grating with
a great many rulings consists of nar-
row peaks, here labeled with their or-
der numbers m. (b) The corresponding
bright fringes seen on the sereen are
called lines and are here also

labeled with order numbers m.

Fig. 36-20 The rays (rom the rul-
ings in a diffraction grating to a dis-
tant point P are approximately par-
allel. The path length difference

dsin#=mA, form=0,12.... (36-25)

(maxima—lines).

where A is the wavelength of the light. Each integer m represents a different line;
hence these integers can be used to label the lines, as in Fig. 36-19. The integers
are then called the order numbers, and the lines are called the zeroth-order line
(the central line, with m = 0), the first-order line (m = 1), the second-order line
(m = 2),and so on.

If we rewrite Eq. 36-25 as # = sin™'(mA/d), we see that, for a given diffraction
grating, the angle from the central axis to any line (say, the third-order line)
depends on the wavelength of the light being used. Thus, when light of an
unknown wavelength is sent through a diffraction grating, measurements of the
angles to the higher-order lines can be used in Eq. 36-25 to determine the wave-
length. Even light of several unknown wavelengths can be distinguished and
identified in this way. We cannot do that with the double-slit arrangement of
Section 35-4, even though the same equation and wavelength dependence apply
there. In double-slit interference, the bright fringes due to different wavelengths
overlap too much to be distinguished.

Width of the Lines

A grating’s ability to resolve (separate) lines of different wavelengths depends on
the width of the lines. We shall here derive an expression for the half-width of
the central line (the line for which m = 0) and then state an expression for the
half-widths of the higher-order lines. We define the half-width of the central line
as being the angle Af,, from the center of the line at # = 0 outward to where
the line effectively ends and darkness effectively begins with the first minimum

I To point P
on viewing
SCTEET

This path length difference
between adjacent rays
determines the interference.

Path length
difference

between cach two adjacent rays 1s

d sin #, where #1is measured as
shown. (The rulings extend into and
out of the page.) I

between adjacent rays

e

(Fig. 36-21). At such a minimum, the N rays from the N slits of the grating cancel
one another. (The actual width of the central line is, of course, 2(A#,, ), but line
widths are usually compared via half-widths.)

In Section 36-3 we were also concerned with the cancellation of a great many
rays, there due to diffraction through a single slit. We obtained Eq. 36-3, which,
because of the similarity of the two situations, we can use to find the first
minimum here. It tells us that the first minimum occurs where the path length
difference between the top and bottom rays equals A. For single-slit diffraction,
this difference is a sin 6. For a grating of N rulings, each separated from the next
by distance d, the distance between the top and bottom rulings is Nd (Fig. 36-22),
and so the path length difference between the top and bottom rays here is
Nd sin A#,,,. Thus, the first minimum occurs where

Nd sin Afhy, = A. (36-26)
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Fig. 36-21 The hall-width A&,
of the central line 18 measured from
the center of that line to the adjacent

minimum on a plot of f versus #like
Fig. 36-19a.

Because Afh,, is small, sin A#,, = A#,, (in radian measure). Substituting this in
Eq. 36-26 gives the half-width of the central line as

Aty = (half-width of central line). (36-27)

Nd
We state without proof that the half-width of any other line depends on its location
relative to the central axis and is

Aby, = {half-width of line at &). (36-28)

Nd cos 0
Note that for light of a given wavelength A and a given ruling separation d. the
widths of the lines decrease with an increase in the number N of rulings. Thus, of
two diffraction gratings, the grating with the larger value of N is better able to
distinguish between wavelengths because its diffraction lines are narrower and so
produce less overlap.

1 7
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Fig. 36-22 The top and bottom rulings of a diffrac- Nd B Hhom ray
tion grating of N rulings are separated by Nd. The top -
and bottom rays passing through these rulings have a E Path length
path length difference of Nd sin A4, where Ad,, 15 the = A, difference
angle to the first minimum. { The angle is here greatly - I T
exaggerated for clanty.)

Gratings: Dispersion and Resolving Power

The fine rulings, each 0.5 um wide, on
a compact disc function as a diffrac-
tion grating. When a small source of
white light illuminates a disc, the dif-
fracted light forms colored “lanes™ that
are the composite of the diffraction
patterns from the rulings. -
(Kristen Brochmann/Fundamental
Photographs)



To be useful in distinguishing wavelengths that are close to each other (as in a
grating spectroscope), a grating must spread apart the diffraction lines associated
with the various wavelengths. This spreading, called dispersion, is defined as

Ad

D = —  (dispersion defined). (36-29)

Ai
Here Afis the angular separation of two lines whose wavelengths differ by AA.
The greater D is, the greater is the distance between two emission lines whose
wavelengths differ by AA. We show below that the dispersion of a grating at angle
s given by

D= %ﬂﬂﬂ (dispersion of a grating). (36-30)

Thus, to achieve higher dispersion we must use a grating of smaller grating spac-
ing d and work in a higher-order m. Note that the dispersion does not depend on
the number of rulings N in the grating. The SI unit for D is the degree per meter
or the radian per meter.

Resolving Power

To resolve lines whose wavelengths are close together (that is, to make the lines
distinguishable ), the line should also be as narrow as possible. Expressed other-
wise, the grating should have a high resolving power R, defined as

Ay
R = ﬁ (resolving power defined). (36-31)

Here A,,, is the mean wavelength of two emission lines that can barely be recog-
nized as separate, and AA is the wavelength difference between them. The greater
R is, the closer two emission lines can be and still be resolved. We shall show
below that the resolving power of a grating is given by the simple expression

R =Nm (resolving power of a grating). (36-32)

To achieve high resolving power, we must use many rulings (large N).

Proof of Eq. 36-30

Let us start with Eq. 36-25, the expression for the locations of the lines in the dif-

fraction pattern of a grating:
P E 8 dsin @ = mA.

Let us regard # and A as variables and take differentials of this equation. We find

d(cos @) dé = m dA.



For small enough angles, we can write these differentials as small differences,

obtaining d(cos 6) A0 = m AA (36-33)
Ad B m
or AA  dcos @’

The ratio on the left is simply D (see Eq. 36-29), and so we have indeed derived
Eq.36-30.

Proof of Eq. 36-32

We start with Eq. 36-33, which was derived from Eq. 36-25, the expression for the lo-
cations of the lines in the diffraction pattern formed by a grating. Here AA is the small
wavelength difference between two waves that are diffracted by the grating, and A#is
the angular separation between them in the diffraction pattern. If A# is to be the
smallest angle that will permit the two lines to be resolved. it must (by Rayleigh'’s cri-
terion) be equal to the half-width of each line, which is given by Eq. 36-28:

A

Ag,,, = ———.
b Nd cos @

If we substitute A, as given here for Afin Eq.36-33, we find that

A
— = m AA,
N_om

from which it readily follows that

= /":ratin 7’\ from which it readily follows that
£ A
E A
= L_ | | R = H = Nm.
o 15.4°
8 (degrees) This is Eq. 36-32, which we set out to derive.
= Grati . : :
[\ 57\ Dispersion and Resolving Power Compared
=
S 1 1 The resolving power of a grating must not be confused with its dispersion. Table 36-1
" 15.42 o shows the characteristics of three gratings, all illuminated with light of wavelength
egrees) A = 589 nm, whose diffracted light is viewed in the first order (m = 1 in Eq. 36-25).
. ) You should verify that the values of IJ and R as given in the table can be calculated
z Gr":_-’ g with Eqs. 36-30 and 36-32, respectively. (In the calculations for D, you will need to
z convert radians per meter to degrees per micrometer.)
o 2=pl=.° . For the conditions noted in Table 36-1, gratings A and B have the same
6 (degrees) dispersion D and A and C have the same resolving power R.

Figure 36-26 shows the intensity patterns (also called line shapes) that would

Fig. 36-26 The intensily patterns . . )
9 A S be produced by these gratings for two lines of wavelengths A; and A,, in the

for light of two wavelengths sent

through the gratings of Table 36-1. vicinity of A = 589 nm. Grating B, with the higher resolving power, produces
Graling B has the highest resolving narrower lines and thus is capable of distinguishing lines that are much closer
power, and grating C the highest together in wavelength than those in the figure. Grating C, with the higher

dispersion. dispersion, produces the greater angular separation between the lines.



Table 36-1

Three Gratings®

Grating N d (nm) ] D (*/pm) R

A 10000 2540 13.4° 23.2 10 000
B 20000 2540 13.4° 23.2 20000
[ 10000 1360 25.5° 46.3 10 000

“Doata are for A = 389 nm and m = 1.

Dispersion and resolving power of a diffraction grating

A diffraction grating has 1.26 % 10" rulings uniformly spaced
over width w = 25.4 mm. It is illuminated at normal incidence
by vellow light from a sodium vapor lamp. This light contains
two closely spaced emission lines (known as the sodium
doublet) of wavelengths 589.00 nm and 589.59 nm.

(a) At what angle does the first-order maximum occur (on
either side of the center of the diffraction pattern) for the
wavelength of 589.00 nm?

KEY IDEA

The maxima produced by the diffraction grating can be deter-
mined with Eq. 36-25 (d sin @ = mA).
Calculations: The grating spacing d is

g 254X 103 m

N 1.26 x 10¢
=2.016 X 10" m = 2016 nm.
The first-order maximum corresponds to m = 1. Substituting
these values for d and m into Eq. 36-25 leads to
— sin-! (1)(589.00 nm)
d 2016 nm

= 16.99° = 17.0°.

#=sin"'

{Answer)

(b) Using the dispersion of the grating, calculate the angular

separation between the two lines in the first order.

KEY IDEAS

(1) The angular separation A# between the two lines in the
first order depends on their wavelength difference AA and
the dispersion D of the grating, according to Eq. 36-29
(D = A&AX). (2) The dispersion I depends on the angle #
at which it is to be evaluated.

Calculations: We can assume that, in the first order, the
two sodium lines occur close enough to each other for us to

evaluate D at the angle # = 16.99° we found in part (a) for
one of those lines. Then Eq. 36-30 gives the dispersion as

m 1
D =4cos® ~ (2016 nm)(cos 16.95°)

= 5.187 » 10~* rad/nm.

From Eq. 36-29 and with AA in nanometers, we then have

A6 = D AA = (5.187 X 10~ rad/nm)(589.59 — 589.00)
= 3.06 x 10 ¥ rad = 0.0175° { Answer)

You can show that this result depends on the grating spac-
ing d but not on the number of rulings there are in the
grating.

(c) What is the least number of rulings a grating can have and
still be able to resolve the sodium doublet in the first order?

KEY IDEAS

(1) The resolving power of a grating in any order m is
physically set by the number of rulings N in the grating
according to Eq. 36-32 (R = Nm). (2) The smallest wave-
length difference A that can be resolved depends on the
average wavelength involved and on the resolving power
R of the grating. according to Eq. 36-31 (R = A.../AA).

= o = w x avg

Calculation: For the sodium doublet to be barely resolved,
AA must be their wavelength separation of 0.59 nm, and A,,,
must be their average wavelength of 589.30 nm. Thus, we
find that the smallest number of rulings for a grating to
resolve the sodium doublet is

N:-:ﬁL
m mAA

589.30 nm

~ (1)(0.59 nm) (Angwer)

= 999 rulings.



UNIT-4

Polarization

A light wave is an electromagnetic wave that travels through the vacuum of outer
space. Light waves are produced by vibrating electric charges. The nature of such
electromagnetic waves is beyond the scope of The Physics Classroom Tutorial. For our
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purposes, it is sufficient to merely say that an electromagnetic wave is a transverse
wave that has both an electric and a magnetic component.

The transverse nature of an electromagnetic wave is quite

different from any other type of wave that has been discussed tfiﬂ‘.:':,‘:,’fmm

in The Physics Classroom Tutorial. Let's suppose that we use the of dizectians ...

customary slinky to model the behavior of an electromagnetic

wave. As an electromagnetic wave traveled towards you, then

you would observe the vibrations of the slinky occurring in more

than one plane of vibration. This is quite different than what you

might notice if you were to look along a slinky and observe a )

slinky wave traveling towards you. Indeed, the coils of the slinky ;ﬂiﬁl’ﬂh

would be vibrating back and forth as the slinky approached; yet aswibrating in a vertical
anil In a horizontal plane.

these vibrations would occur in a single plane of space. That is,
the coils of the slinky might vibrate up and down or left and right.
Yet regardless of their direction of vibration, they would be
moving along the same linear direction as you sighted along the
slinky. If a slinky wave were an electromagnetic wave, then the
vibrations of the slinky would occur in multiple planes. Unlike a
usual slinky wave, the electric and magnetic vibrations of an electromagnetic wave
occur in numerous planes. A light wave that is vibrating in more than one plane is
referred to as unpolarized light. Light emitted by the sun, by a lamp in the classroom,
or by a candle flame is unpolarized light. Such light waves are created by electric
charges that vibrate in a variety of directions, thus creating an electromagnetic wave
that vibrates in a variety of directions. This concept of unpolarized light is rather difficult
to visualize. In general, it is helpful to picture unpolarized light as a wave that has an
average of half its vibrations in a horizontal plane and half of its vibrations in a vertical
plane.

It is possible to transform unpolarized light into polarized light. Polarized light waves are
light waves in which the vibrations occur in a single plane. The process of transforming
unpolarized light into polarized light is known as polarization. There are a variety of
methods of polarizing light. The four methods discussed on this page are:

Polarization by Transmission
Polarization by Reflection
Polarization by Refraction
Polarization by Scattering

Polarization by Use of a Polaroid Filter

The most common method of polarization involves the use of a Polaroid filter.
Polaroid filters are made of a special material that is capable of blocking one of the two
planes of vibration of an electromagnetic wave. (Remember, the notion of two planes
or directions of vibration is merely a simplification that helps us to visualize the wavelike
nature of the electromagnetic wave.) In this sense, a Polaroid serves as a device that
filters out one-half of the vibrations upon transmission of the light through the filter.
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When unpolarized light is transmitted through a Polaroid filter, it emerges with one-half
the intensity and with vibrations in a single plane; it emerges as polarized light.

0-
Unpolarized  Polaroid #

Light Filter

Polarized
Light

A Polaroid filter is able to polarize light because of the chemical composition of the filter
material. The filter can be thought of as having long-chain molecules that are aligned
within the filter in the same direction. During the fabrication of the filter, the long-chain
molecules are stretched across the filter so that each molecule is (as much as possible)
aligned in say the vertical direction. As unpolarized light strikes the filter, the portion of
the waves vibrating in the vertical direction are absorbed by the filter. The general rule
is that the electromagnetic vibrations that are in a direction parallel to the alignment of
the molecules are absorbed.

The alignment of these molecules gives the filter a polarization axis. This polarization
axis extends across the length of the filter and only allows vibrations of the
electromagnetic wave that are parallel to the axis to pass through. Any vibrations that
are perpendicular to the polarization axis are blocked by the filter. Thus, a Polaroid filter
with its long-chain molecules aligned horizontally will have a polarization axis aligned
vertically. Such a filter will block all horizontal vibrations and allow the vertical vibrations
to be transmitted (see diagram above). On the other hand, a Polaroid filter with its
long-chain molecules aligned vertically will have a polarization axis aligned horizontally;
this filter will block all vertical vibrations and allow the horizontal vibrations to be
transmitted.

Relationship Between Long-Chain Molecule Orientation
and the Orientation of the Polarization Axis

. .

Whenmoleoules m the filter Whenmolecules m the filter
are aligned verhcally, the are aligned honzmtally, the



Polarization of light by use of a Polaroid filter is often demonstrated in a Physics class
through a variety of demonstrations. Filters are used to look through and view objects.
The filter does not distort the shape or dimensions of the object; it merely serves to
produce a dimmer image of the object since one-half of the light is blocked as it passed
through the filter. A pair of filters is often placed back to back in order to view objects
looking through two filters. By slowly rotating the second filter, an orientation can be
found in which all the light from an object is blocked and the object can no longer be
seen when viewed through two filters. What happened? In this demonstration, the light
was polarized upon passage through the first filter; perhaps only vertical vibrations
were able to pass through. These vertical vibrations were then blocked by the second
filter since its polarization filter is aligned in a horizontal direction. While you are unable
to see the axes on the filter, you will know when the axes are aligned perpendicular to
each other because with this orientation, all light is blocked. So by use of two filters,
one can completely block all of the light that is incident upon the set; this will only
occur if the polarization axes are rotated such that they are perpendicular to each
other.

Teacher seen
through tweo Polaroads

Teacher

Hxes aligned parallel to each other Hoces aligned perpendicular to each other

A picket-fence analogy is often used to explain how this dual-filter demonstration
works. A picket fence can act as a polarizer by transforming an unpolarized wave in a
rope into a wave that vibrates in a single plane. The spaces between the pickets of the
fence will allow vibrations that are parallel to the spacings to pass through while
blocking any vibrations that are perpendicular to the spacings. Obviously, a vertical
vibration would not have the room to make it through a horizontal spacing. If two
picket fences are oriented such that the pickets are both aligned vertically, then vertical
vibrations will pass through both fences. On the other hand, if the pickets of the second
fence are aligned horizontally, then the vertical vibrations that pass through the first
fence will be blocked by the second fence. This is depicted in the diagram below.



The Picket Fence Analogy

‘When the pickets of both fences are aligned in the werhical
direchion, a verhical vibratum canmake 1t through both fences.

‘When the pickets of the second fence are horizmtal, wertical
wibzations which make it through the first fencevwill beblocked .

In the same manner, two Polaroid filters oriented with their polarization axes
perpendicular to each other will block all the light. Now that's a pretty cool observation
that could never be explained by a particle view of light.

Polarization by Reflection

Unpolarized light can also undergo polarization by reflection off of nonmetallic surfaces.
The extent to which polarization occurs is dependent upon the angle at which the light
approaches the surface and upon the material that the surface is made of. Metallic
surfaces reflect light with a variety of vibrational directions; such reflected light is
unpolarized. However, nonmetallic surfaces such as asphalt roadways, snowfields and
water reflect light such that there is a large concentration of vibrations in a plane
parallel to the reflecting surface. A person viewing objects by means of light reflected
off of nonmetallic surfaces will often perceive a glare if the extent of polarization is
large. Fishermen are familiar with this glare since it prevents them from seeing fish that
lie below the water. Light reflected off a lake is partially polarized in a direction parallel
to the water's surface. Fishermen know that the use of glare-reducing sunglasses with
the proper polarization axis allows for the blocking of this partially polarized light. By
blocking the plane-polarized light, the glare is reduced and the fisherman can more
easily see fish located under the water.



Light Ligh
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Reflection of light off of non-metallic
surfaces results in some degree of
polarization parallel to the surface.

Polarization by Refraction

Polarization can also occur by the refraction of light. Refraction occurs when a beam of
light passes from one material into another material. At the surface of the two
materials, the path of the beam changes

its direction. The refracted beam acquires some
degree of polarization. Most often, the polarization

occurs in a plane perpendicular to the surface. The ’%&

polarization of refracted light is often demonstrated
in a Physics class using a unique crystal that serves
as a double-refracting crystal. Iceland Spar, a
rather rare form of the mineral calcite, refracts
incident light into two different paths. The light

is split into two beams upon entering the crystal.
Subsequently, if an object is viewed by looking
through an Iceland Spar crystal, two images will be fractod .

seen. The two images are the result of the double ﬁm SWEMTM
refraction of light. Both refracted light beams are with perpendicular orientations.
polarized - one in a direction parallel to the surface

and the other in a direction perpendicular to the

surface. Since these two refracted rays are polarized with a perpendicular orientation, a
polarizing filter can be used to completely block one of the images. If the polarization
axis of the filter is aligned perpendicular to the plane of polarized light, the light is
completely blocked by the filter; meanwhile the second image is as bright as can be.
And if the filter is then turned 90-degrees in either direction, the second image
reappears and the first image disappears. Now that's pretty neat observation that could
never be observed if light did not exhibit any wavelike behavior.

Polarization by Scattering

Polarization also occurs when light is scattered while traveling through a medium. When
light strikes the atoms of a material, it will often set the electrons of those atoms into
vibration. The vibrating electrons then produce their own electromagnetic wave that is



radiated outward in all directions. This newly generated wave strikes neighboring
atoms, forcing their electrons into vibrations at the same original frequency. These
vibrating electrons produce another electromagnetic wave that is once more radiated
outward in all directions. This absorption and reemission of light waves causes the light
to be scattered about the medium. (This process of scattering contributes to the
blueness of our skies, a topic to be discussed later.) This scattered light is partially
polarized. Polarization by scattering is observed as light passes through our
atmosphere. The scattered light often produces a glare in the skies. Photographers
know that this partial polarization of scattered light leads to photographs characterized
by a washed-out sky. The problem can easily be corrected by the use of a Polaroid
filter. As the filter is rotated, the partially polarized light is blocked and the glare is
reduced. The photographic secret of capturing a vivid blue sky as the backdrop of a
beautiful foreground lies in the physics of polarization and Polaroid filters.

Applications of Polarization

Polarization has a wealth of other applications besides their use in glare-reducing
sunglasses. In industry, Polaroid filters are used to perform stress analysis tests on
transparent plastics. As light passes through a plastic, each color of visible light is
polarized with its own orientation. If such a plastic is placed between two polarizing
plates, a colorful pattern is revealed. As the top plate is turned, the color pattern
changes as new colors become blocked and the formerly blocked colors are transmitted.
A common Physics demonstration involves placing a plastic protractor between two
Polaroid plates and placing them on top of an overhead projector. It is known that
structural stress in plastic is signified at locations where there is a large concentration of
colored bands. This location of stress is usually the location where structural failure will
most likely occur. Perhaps you wish that a more careful stress analysis were performed
on the plastic case of the CD that you recently purchased.

Polarization is also used in the entertainment industry to produce and show 3-D movies.
Three-dimensional movies are actually two movies being shown at the same time
through two projectors. The two movies are filmed from two slightly different camera
locations. Each individual movie is then projected from different sides of the audience
onto a metal screen. The movies are projected through a polarizing filter. The polarizing
filter used for the projector on the left may have its polarization axis aligned horizontally
while the polarizing filter used for the projector on the right would have its polarization
axis aligned vertically. Consequently, there are two slightly different movies being
projected onto a screen. Each movie is cast by light that is polarized with an orientation
perpendicular to the other movie. The audience then wears glasses that have two
Polaroid filters. Each filter has a different polarization axis - one is horizontal and the
other is vertical. The result of this arrangement of projectors and filters is that the left
eye sees the movie that is projected from the right projector while the right eye sees
the movie that is projected from the left projector. This gives the viewer a perception of
depth.
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Our model of the polarization of light provides some substantial support for the
wavelike nature of light. It would be extremely difficult to explain polarization
phenomenon using a particle view of light. Polarization would only occur with a
transverse wave. For this reason, polarization is one more reason why scientists believe
that light exhibits wavelike behavior.

Double Refraction, Polarized Light

= Experiment: observations with optical calcite.

* Light passing through a calcite crystal 1s split into two rays. This process, first reported by
Erasmus Bartholinus in 1669, is called double refraction. The two rays of Light are each plane
polarized by the calcite such that the planes of polarization are mutually perpendicular. For
normal incidence (a Snell’s law angle of 07), the two planes of polarization are also perpendicu-
lar to the plane of incidence.

* For normal incidence (a 07 angle of
incidence), Snell’s law predicts that the
angle of refraction will be 0°. In the 0] E
case of double refraction of a normally A
incident ray of light, at least one of the :
two rays must violate Snell’s Law as we X
know it. For calcite, one of the two rays
does indeed obey Snell’s Law; this ray 1s
called the ordinary ray (or O-ray). The
other ray (and any ray that does not obey
Snell’s Law) is an extraordinary ray
{(or E-ray).




» For ordinary rays the vibration direction, indicated by the electric vectors in our illustrations, 1s
perpendicular to the ray path. For extraordinary rays, the vibration direction 1s not perpendicular
to the ray path. The direction perpendicular to the vibration direction is called the wave normal.
Although Snell’s Law is not satisfied by the ray path for extraordinary rays, it is satisfied by the
wave normals of extraordinary rays. In other words, the wave normal direction for the refracted
ray is related to the wave normal direction for the incident ray by Snell’s Law.

wavelength wave
A

P propagation direction
or ray path

= All transparent crystals except those in the cubic system have the property of double refraction.
For most crystals the image separation is not large enough to be visible. However, we will



observe other optical properties that result from the double refraction. For hexagonal and tet-
ragonal erystals, there will be one O-ray and one E-ray. For orthorhombic, monoclinic, and
triclinic crystals, there will be two E-rays. In general, the refractive indices for non-cubic crys-
tals depend on vibration direction. Non-cubic crystals are, therefore, said to be optically ani-
sotropic. In most cases the refractive indices for the two rays produced by double refraction are
not the same. One of the two rays will have a higher refractive index (and a lower velocity); this
ray is called the slow ray. The other ray is then the fast ray.

* Ordinary light is not polarized. Looking along a ray of light, the electric vectors make all angles
with the vertical. Light that is plane polarized in the vertical plane has only vertical electric
vectors. The plane of polarization is
the plane that includes both the vibra-
tion direction and the ray path. Light . plane
may be polarized by crystals, by unpolarized polarized
polarizing filters, and by reflection. light light
Reflected light is partially polarized,
favoring the vibration direction
perpendicular to the plane of the ray path (including both the incident and reflected rays).

» Polarizing filters exclude all light not vibrating in the preferred direction of the filter. Polarizing
sunglasses, by orienting their polarizing material vertically, selectively exclude the polarized
portion of light reflected by horizontal surfaces. Transparent crystals do not exclude light,
whatever its plane of polarization. Transparent anisotropic crystals resolve the electric vectors
of incident light into two perpendicular electric vectors by the process of double refraction.
Upon emergence from the crystal, the two rays add together again according to the rules of
vector addition. However, because the two rays have not traveled through the crystal with the
same velocity, the combined emerging ray will not be identical to the incident ray.

» Polarizing microscopes are equipped with polarizing filters both below and above the stage of
the microscope. The lower filter (fixed, but rotatable) is called the polarizer and on our micro-
scopes has its direction of polarization oriented E-W when viewed from above. (Beware, some
older microscopes have their polarizing filters oriented N-8!) The upper filter (removable, but
not rotatable) is called the analyzer and has its direction of polarization oriented N-S when
viewed from above. Because the polariztion directions of these two filters are perpendicular, all
of the light passing through the polarizer will be blocked by the analyzer, unless the analyzer is
removed or an anisotropic erystal is placed between the two filters.



* Note that if the incident light 1s already polarized, special orientations exist for which all of the
incident light 1s resolved along one of the two preferred vibration directions in the crystal. In
this special case, there is no double refraction and the emerging ray will be indentical to the
incident ray. If a crystal is oriented so that one of its two vibration directions 1s "parallel to the
polarizer” (that is parallel to the plane of polarization of the polarizing filter), then all light
emerging from the crystal would be polaized E-W and would be blocked by the analyzer. When
this happens, the crystal appears dark and is said to be "at extinction."

extinction

partial
transmission

N

maximum

transmission

extinction

Huygens' Principle

>

Incident plane
wave

Wave past
small opening

In 1678 Huygens proposed a
model where each point on a
wavefront may be regarded as a
source of waves expanding from
that point. The expanding waves
may be demonstrated in a ripple
tank by sending plane waves
toward a barrier with a small
opening. If waves approaching a
beach strike a barrier with a small
opening, the waves may be seen
to expand from the opening.



Huygens' principle
provides a
convenient way to
visualize refraction.
If points on the
wavefront at the
boundary of a
different medium
serve as sources for
the propagating
light, one can see
why the direction of

the light

propagation

changes. Slowar

medium
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the opening.

The Huygens' principle view

_ = permitted a visualization of
straight through ~ how light could penetrate into
_ the geometric shadow in a way

Crystal Optics

| that the particle view could

not.

Though helpful in establishing a wave view rather than a particle view of light for
ordinary optics, Huygens' principle left a number of unanswered questions. For
example, with its view of each point on a wavefront as a source, it gave no
explanation of why it didn't propagate backward as well as forward. Miller and
Fresnel further developed the theory of light propagation including diffraction. The
theory of light propagation was made more rigorous by Kirchhoff.


http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/refr.html#c1
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Homogeneous, Anisotropic Media

Introduction

@ material equations for homogeneous anisotropic media
D=¢E
B = uH

@ tensors of rank 2, written as 3 by 3 matrices
e ¢ dielectric fensor
e u. magnetic permeability tensor
@ examples:
e crystals, liquid crystals
e external electric, magnetic fields acting on isotropic materials
(glass, fluids, gas)
@ anisotropic mechanical forces acting on isotropic materials

Properties of Dielectric Tensor

@ Maxwell equations imply symmetric dielectric tensor

r €11 €12 €13
E=£ = €12 €22 €23
€13 €23 £33

@ symmetric tensor of rank 2 = coordinate system exists where
tensor is diagonal

@ orthogonal axes of this coordinate system: principal axes

@ elements of diagonal tensor: principal dielectric constants

@ 3 principal indices of refraction in coordinate system spanned by
principal axes

P 0 0
D=| 0 n3 0 |E
0 0 m

@ x, y, z because principal axes form Cartesian coordinate system




Uniaxial Materials

@ isotropic materials: ny = ny = n;
for any coordinate system

@ anisotropic materials:
Ny # Ny # Nz

@ uniaxial materials: ny = ny # n;

@ ordinary index of refraction:
no = Ny = ny

@ extraordinary index of refraction:
Ne = Nz

@ rotation of coordinate system
around z does not change
anything

@ most materials used in polarimetry
are (almost) uniaxial

Crystals

Crystal Axes Terminology

@ optic axis is the axis that has a different index of refraction
@ also called ¢ or crystallographic axis
@ fast axis: axis with smallest index of refraction

@ ray of light going through uniaxial crystal is (generally) split into
two rays

ordinary ray (o-ray) passes the crystal without any deviation
extraordinary ray (e-ray) is deviated at air-crystal interface
two emerging rays have orthogonal polarization states

common to use indices of refraction for ordinary ray (n,) and
extraordinary ray (ne) instead of indices of refraction in crystal
coordinate system

Ne < Ny negative uniaxial crystal
@ Ny = Ng: positive uniaxial crystal




Plane Waves in Anisotropic Media

Displacement and Electric Field Vectors

@ plane-wave ansatz for D, E, H

E = E’UE}{E-E—J:]

D = Dye/(k7—w1)

F.lr. = HDE}{E-E_‘JJ
@ no net charges in medium (V - D = 0)
D k=0

D perpendicular to k
@ D and E not parallel = E not perpendicular to k
@ wave normal, energy flow not in same direction, same speed

Magnetic Field

@ constant, srialar_ 4, vanishing current
density = H || B

eV-H=0=H.1k

. s . o H,B
eVxH=1LH1D '

~ . o ..
i?xE——%‘ﬁqH_E

e D, E, and k all in one plane
@ H, B perpendicular to that plane
@ Poynting vector S = £E x H

perpendicular to £ and H = S (in
general) not parallel to k

@ energy (in general) not transported in
direction of wave vector k




Relation between D and E

@ combine Maxwell, material equations in principal coordinate
system

;ADJ-—;If,E;—nz(E.—S,; (E:E')) f=1---3

@ 5 = k/|k|: unit vector in direction of wave vector k

@ n: refractive index associated with direction s, i.e. n = n(s)
@ 3 equations for 3 unknowns E

@ eliminate E assuming E # 0 = Fresnel equation

s2 57 s2 1

4 + —
nz—fxfx n?—_uey nf—;:fz n2

@ with n,z = pej

2 (7 - ) (7 - 2) + 4 (& = £) (7 - ) 4k (7 - &) (- ) -0

Electric Field in Anisotropic Material

@ with arbitrary constant a, electric field vector given by

£

E=a| 7z
5
P12
@ quadratic equation in n = generally two solutions for given

direction 8
@ electric field can also be written as
s (E : §)
Ei = —— 71
K né — HEk
@ system of 3 equations can be solved for Ex

@ denominator vanishes if k parallel to a principal axis = treat
separately




Mon-Absorbing, Non-Active, Anisotropic Materials

@ k not parallel to a principal axis = ratio of 2 electric field
components k and /

Ec _ sk (m—pe))
Ei s (P — pek)

@ ratio is independent of electric field components
@ n° and ¢ real = ratios are real = electric field is linearly polarized

@ in non-absorbing, non-active, anisotropic material, 2 waves
propagate that have different linear polarization states and
different directions of energy flows

@ direction of vibration of D corresponding to 2 solutions are
orthogonal to each other (without proof)

Wave Propagation in Uniaxial Media

@ uniaxial media = dielectric constants:

-
Fz—f?g

@ second form of Fresnel eguation reduces to
(1P = 8) [ (s + &) (1 — ) + s (oF — )] = 0

@ two solutions ny, n= given by




Propagation in General Direction
@ (unit) wave vector direction in spherical coordinates

Sy sinflcos
§=| sy, | =] sindsing
Sz cos

@ {2 angle between wave vector and optic axis
@ ¢ azimuth angle in plane perpendicular to optic axis

@
1 cos? N sin g
A
o (0) = Nalg

\/ M sin? # + n cos?

@ take positive root, negative value corresponds to waves
propagating in opposite direction

Ordinary and Extraordinary Rays
@ from before

T coszo+sm20
TR R
Non
n2(0) _ olle

\/"n?, sin? @ + n2 cos2
@ o varies between n, for # = 0 and n, for ## = 90°

@ first solution propagates according to ordinary index of refraction,
independent of direction = ordinary beam or ray

@ second solution corresponds to extraordinary beam or ray

@ index of refraction of extraordinary beam is (in general) not the
extraordinary index of refraction




Ordinary Beam

@ ordinary beam speed independent of wave vector direction
@ for uD; = peE; = P (E s (E: : 9‘.}) .i=1-..3 to hold for any
direction §, E, §=0and E,, = 0

@ electric field vector of ordinary beam
(with real constant a, # 0)

. sing H,B
E,=a,| —cosd
D -

@ ordinary beam is linearly polarized

° E, perpendicular to plane formed by
wave vector k and c-axis

@ displacement vector D, = noE, || Es

@ Poynting vector S, || k

Extraordinary Ray

@ since D, - kK = 0 and D, - D, = 0 = unique solution (up to real
constant a,)
< cos f cos ¢
Do = a, | cosfising
—sin#

e since E,- D, = 0, D, = ¢E,

2 cos f cos ¢
E.=a| nicosfsing
—n2sing

@ uniaxial medium = E, - E, = 0
@ however, Eo-k #0




Dispersion Angle

 angle between k and Poynting vector S = angle between E and D
= dispersion angle
an EexDe| (n2 - m)tand sin20  (n2—nd)
ik = — — = =
Ee- Da ng + ngtan®a 2 nZsin®d + n2cos?d

tan ﬂ)

@ for given k in principal axis system, o fully determines direction of
energy propagation in uniaxial medium

@ equivalent expression

a = # — arctan (

ol

@ for # approaching = /2, a =0
aford=0,a=0

Propagation Direction of Extraordinary Beam

@ angle # between Poynting vector S and optic axis

tan® = —2tand

n

@ ordinary and extraordinary wave do (in general) not travel at the
same speed

@ phase difference in radians between the two waves given by
% (no(0)de — Nody)

@ dp e geometrical distances traveled by ordinary and extraordinary
rays




Propagation Along ¢ Axis

@ plane wave propagating along c-axis = 0 =0
@ ordinary and extraordinary beams propagate at same speed ﬁ

@ electric field vectors are perpendicular to c-axis and only depend
on azimuth ¢

@ ordinary and extraordinary rays are indistinguishable
@ uniaxial medium behaves like an isotropic medium
2 example: “c-cut” sapphire windows

Propagation Perpendicular to ¢ Axis

@ plane wave propagating perpendicular to c-axis = # = =/2
sin ¢

E,=| —cose
0

@ E, perpendicular to plane formed by k and c-axis
@ electric field vector of extraordinary wave

- 0
E,-| o
1
@ E, parallel to c-axis

@ direction of energy propagation of extraordinary wave parallel to k
since Ey || De




Phase Delay between Ordinary and Extraordinary Rays

@ ordinary and extraordinary wave propagate in same direction

@ ordinary ray propagates with speed %

@ extraordinary beam propagates at different speed &

@ E,, E. perpendicular to each other = plane wave with arbitrary

polarization can be (coherently) decomposed into components
parallel to E, and E,

@ 2 components will travel at different speeds

@ (coherently) superposing 2 components after distance d = phase
difference between 2 components Z(n, — n,)d radians

@ phase difference = change in polarization state
@ basis for constructing linear retarders

@ ordinary ray propagates like in an isotropic medium with index n,

@ extraordinary ray sees direction-dependent index of refraction

NyNa

ni{ﬂ} -7
\/ M3 sin® @ + n3 cos2

ne direction-dependent index of refraction of the extraordinary ray
n, ordinary index of refraction
n. extraordinary index of refraction

# angle between extraordinary wave vector and optic axis

@ extraordinary ray is not parallel to its wave vector
@ angle between the two is dispersion angle

(2 — n2)tand
m + mtan?g

tan o =




Reflection and Transmission at Uniaxial Interfaces

General case

@ from isotropic medium (n;) into uniaxial medium (ny, ne)
@ 0;: angle between surface normal and k; for incoming beam

@ 04 2: angles between surface normal and wave vectors of
(refracted) ordinary wave k; and extraordinary wave k»

@ phase matching at interface requires
Ki-X=k -X=Ks-X
@ X: position vector of a point on interface surface
msind; = nysinfy = nzsin .

@ Ny = ny: index of refraction of ordinary wave
@ n: index of refraction of extraordinary wave

Ordinary and Extraordinary Rays

@ ordinary wave = Snell’s law

. ny
sinfly = —sinf;
ny

@ law for extraordinary ray not trivial
nsinfy = ne (8(02)) sin iz

@ (in general) #, and therefore k. will not determine direction of
extraordinary beam since Poynting vector (in general) not parallel
to wave vector

@ solve for f2 = determine direction of Poynting vector
@ special cases reduce complexity of equations




Extraordinary Ray Refraction for General Case

A 22 )

GGy [rr'i rvij - nn-|r.'
oot s

propagation vector of extraordinary ray

Sin o Sin By (Cy SNy = Gy 0OS B

5 0a% o 00 g o
fe® 4 (o, sing F
yE3 + (e SNy = gy oOs B |
sin ex 008 B3 (Cy SNy — 0y 005 B
Sy 0a% o SN g
-,‘_-'32 f |Cy 5Ny = oy I:DGI'-’-;lE
Sin
Sz =]

Je2 g [Cx Sin By = Cy com ':2
Ve F ¥ 2]

¢ optic axis vector € = (Cx. Cy. cz'f

S propagation direction of extraordinary ray S = (S,. S,.S;
#; angle between IE; and interface normal
il angle between ks and interface normal

o dispersion angle

:|T

Mormal Incidence

@ normal incidence = #;,=0,8; =, =0

@ choose plane formed by surface normal and crystal axis
@ both wave vectors and ordinary ray not refracted

@ extraordinary ray refracted by dispersion angle «

2
o = — arctan | 2 tan#
n2




Optic Axis in Plane of Incidence and Plane of Interface

® 0+ 02 =7/2 = cotlp = 72 cotby

@ f4: angle between surface normal and ordinary ray or wave vector
(sin @y = ngsinf4)

@ extraordinary wave sees equivalent refractive index

r

ny = V."ng +sin® 0 (1 - %)

@ direction of Poynting vector

Sx = cos(fz + a)
S, = sin(f,+a)
Sz = O

@ determine dispersion angle o and add to #- to obtain direction of
extraordinary ray

Optic Axis Perpendicular to Plane of Incidence

@ c-axis perpendicular to plane of incidence = # = 5, Nz (3) = Ne
msind; = ngsin s

@ extraordinary wave vector obeys Snell's law with index n,
@ ¢ = 5 = dispersion angle o = 0

@ Poynting vector || wave vector, extraordinary beam itself obeys
Snell's law with n,

@ double refraction only for non-normal incidence




Interface from Uniaxial Medium to Isotropic Medium
@ ordinary ray follows Snell's law
@ transmitted extraordinary wave vector and ray coincide
@ exit of extraordinary wawve on interface defined by extraordinary ray

9 extraordinary wave vector follows Snell's law with index n. (¢)

msinflg = nasindy

@ m index of isotropic medium
@ flg angle of wawve/ray vector with surface normal in isotropic medium
@ e, fy corresponding values for extraordinary wave vectorin
uniaxial medium
@ ns is function of # normally already known from beam propagation
in uniaxial medium

@ f is function of geometry of interface,

@ plane-parallel slab of uniaxial medium, #g = @, (in general)
extraordinary beam displaced on exit

Total Internal Reflection (TIR)

@ TIR also in anisotropic media

@ N, # n, = one beam may be totally
reflected while other is transmitted

@ principal of most crystal polarizers

@ example: calcite prism, normal incidence, -
optic axis parallel to first interface, exit face
inclined by 40°

@ = extraordinary ray not refracted, two rays
propagate according to indices ng,n,

@ at second interface rays (and wave vectors)
at 40° to surface

@ 632.8 nm: ny = 1.6558, ny = 1.4852

@ requirement for total reflection %‘fsin Oy =1

@ with m; = 1 = extraordinary ray transmitted,
ordinary ray undergoes TIR
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UNIT-5

Laser History

In 1916, Albert Einstein predicted
the existence of stimulated
emission, based on statistical
physics considerations.

Einstein, A., “Zur Quantentheorie
der Strahlung,” Physikalische
Gesellschaft Ziirich, 18, 47-62
(1916).

He never considered the
possibility of amplification.

Amplification of light through
stimulated emission requires
population inversion.

In equilibrium, lower energy levels

are always more populated. As a
result, absorption always
dominates.

Before During After
emission emission emission
Bcedied Ey ——
hy
hy hy ANNAN
f h
Deldentphoton AE oy
Guurdied E; ——
Atom in Atom In
axchhed state ground state

E;,—-E1=AE=hv

—O-00-0—
(a) (b)

(Diagram: resourcefulphysics.org)



In order for the stimulated emission
to become significant, higher energy
levels should be artificially made
more populated. This is called
population inversion. It is achieved
via «pumping».

There are many ways of
pumping, including
electrical and optical.

Fiber Lasers

In 1964 C. J. Koester and E. Snitzer developed the first
neodymium-doped fiber amplification, paving the way for fiber
telecommunications. Applied Optics, 3, 1182-1186 (1964).
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The first barcode scanner was
made in 1974.

Ultrafast Laser Pulses
Today it’s routine to generate ultrashort laser pulses with
durations < 100 femtosecond (10-13 s). The extreme
high intensities yield many nonlinear-optical effects.

The first femtosecond laser was developed in 1974 by
Ippen and Shank. Appl. Phys. Lett. 24, 373-375 (1974)

Computer Camera Age of Human existence

clock cycle flash month  nyramids

N L
1075 1072 10° 10% 10° 10° 10%.10° 10° 102 105 10'

Time (seconds)
1 femtosecond 1 picosecond

Hologram Recording and Reconstruction Holograms are usually recorded with an optical set-up
consisting of a light source (e.g. a laser), mirrors and lenses for beam guiding and a recording
device (e.g. a photographic sensor). A typical set-up is shown in Fig. 2.12 [79, 121]. Light with
sufficient coherence is split into two waves of reduced amplitude by a beam splitte

Laser I b

! . - | BS

P
. 3
Object

Fig. 212 Hologram recording



(BS). The first wave illuminates the object, is scattered at the object surface and
reflected towards the recording medium. The second wave—the reference wave—
directly illuminates the light sensitive medium. The waves interfere with each other
to produce a characteristic interference pattern. In classical photographic hologra-
phy the interference pattern is recorded on a photosensitive material such as silver
halide films or plates and rendered permanent by wet chemical development of the
film. In digital holography the interference pattern is recorded directly onto an
electronic photosensor such as a CCD or CMOS array. The recorded interference
pattern is the hologram.

The original object wave is reconstructed by illuminating the hologram with the
reference wave, Fig. 2.13. An observer sees a virtual image, which is optically
indistinguishable from the original object. The reconstructed image exhibits all
effects of perspective, parallax and depth-of-field.

The holographic process is described mathematically vsing the formalism of
Sect. 2.2, Across the extent of the photographic plate, the complex amplitude of the
object wave is described by

Ep(x.y) = ao(x.y) explipg(x.y)) (2.58)

with real amplitude a and phase ¢,.

Egp(x.y) = ag(xy) expligg(xy)) (2.59)
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Fig. 213 Hologram reconstruction
is the complex amplitude of the reference wave with real amplitude ag and phase
Pr-

Both waves interfere at the surface of the recording medium and the resultant
mmtensity is described by

I{xy) = |Eo(x.y) + Er(xy)|*

= (Ealxy) + Eg(x.y))(Ea(x.y) + Er(x.y))"

= Eg(xy)Eg(x.y) + Eo(x.y)Ep(x.¥) + Eolx, y)Eg(xy) + Eg(x.¥)Ep(x,y)
(2.60)



The amplitude transmission fi(x, v) of the developed photographic plate (or of
other recording media) is proportional to f{x, v):

hlxy) = hy + prlixy) (2.61)

The constant # is the slope of the amplitude transmittance versus exposure
characteristic of the light sensitive material. For photographic emulsions f is neg-
ative. The exposure duration is denoted by 1 and f; is the amplitude transmission of
the unexposed plate; i(xv) is the hologram function. In Digital Holography using
CCD or CMOS arrays as the recording medium, /iy can be neglected.

For hologram reconstruction in classical holography, the hologram is illuminated
with a replica of the original reference wave in terms of wavelength and phase. This
is represented mathematically as a multiplication of the amplitude transmission of
the medium with the complex amplitude of the reconstruction (reference) wave,

Ex(xy)h(xy) = [ho + pr(a} + a3) | Er(x.y)
+ fragEg(xy) + frEx(xy)Ep(x.y) (2.62)

The first term on the right side of this equation is the reference wave multiplied
by a constant factor. It represents the non-diffracted wave passing through the
hologram (zero diffraction order). The second term is the reconstructed object wave
and forms the virtual image. The real factor ll'imir only influences the brightness of
the image. The third term generates a distorted real image of the object. For off-axis
holography the virtual image, the real image and the non-diffracted wave are
spatially separated.

The reason for the distortion of the real image is the spatially varying complex
factor E;. which modulates the image forming conjugate object wave E;,. An
undistorted real image can be generated by replaying the hologram with the
complex conjugate of the reference beam Eg. This is mathematically represented
by,

Ep(x.y)h(x.y) = [ho + fr(a} + ab)] Eg(x.y)
+ PragE,(x.¥) + frEy (x, ¥)Eo(x,¥) (2.63)

What is a Phototransistor?

A Phototransistor is an electronic switching and current amplification component which
relies on exposure to light to operate. When light falls on the junction, reverse current
flows which is proportional to the luminance. Phototransistors are used extensively to
detect light pulses and convert them into digital electrical signals. These are operated
by light rather than electric current. Providing large amount of gain, low cost and these
phototransistors might be used in numerous applications.



It is capable of converting light energy into electric energy. Phototransistors work in a
similar way to photo resistors commonly known as LDR (light dependant resistor) but
are able to produce both current and voltage while photo resistors are only capable of
producing current due to change in resistance. Phototransistors are transistors with the
base terminal exposed. Instead of sending current into the base, the photons from
striking light activate the transistor. This is because a phototransistor is made of a
bipolar semiconductor and focuses the energy that is passed through it. These are
activated by light particles and are used in virtually all electronic devices that depend on
light in some way. All silicon photo sensors (phototransistors) respond to the entire
visible radiation range as well as to infrared. In fact, all diodes, transistors, Darlington’s,
triacs, etc. have the same basic radiation frequency response.

The structure of the phototransistor is specifically optimized for photo applications.
Compared to a normal transistor, a photo transistor has a larger base and collector
width and is made using diffusion or ion implantation.

Characteristics :
Low-cost visible and near-IR photo detection.
Available with gains from 100 to over 1500.
Moderately fast response times.
Available in a wide range of packages including epoxy-coated, transfer-molded and surface mounting
technology.
o Electrical characteristics similar to that of signal transistors.

A photo transistor is nothing but an ordinary bi-poplar transistor in which the base region
is exposed to the illumination. It is available in both the P-N-P and N-P-N types having
different configurations like common emitter, common collector and common base.
Common emitter configuration is generally used. It can also work while base is made
open. Compared to the conventional transistor it has more base and collector areas.


http://www.edgefxkits.com/density-based-traffic-signal-system

Ancient photo transistors used single semiconductor materials like silicon and
germanium but now a day’s modern components uses materials like gallium and
arsenide for high efficiency levels. The base is the lead responsible for activating the
transistor. It is the gate controller device for the larger electrical supply. The collector is
the positive lead and the larger electrical supply. The emitter is the negative lead and
the outlet for the larger electrical supply.

i
Base - p

Collector - n

Phorto Transistor Construction
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