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UNIT-1

A vector describes a movement from one point to another. It is a mathematical quantity having both Magnitude
& Direction. The length of the segment of the directed line is called the magnitude of the vector and the angle at
which the vector is inclined shows the direction of the vector.

: BYJU'S
magnitude 0BYwYs

— T —

tail ) head

direction
—_—

The beginning point of a vector is called as “Tail” and the end side (having arrow) is called as “Head.”
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Examples & Representation-

Velocity, Acceleration, Force, Increase/Decrease in Temperature etc.

[BYJUs

A

bl

—
A vector between two points A and B is given as AB, or vector a.

Understanding more about Vectors-

Breaking a vector into its x and y components is the most common way for solving vectors.

DJBWUYs

A vector “a" is inclined with horizontal having an angle equal to 6.
This given vector “a" can be broken down into two components i.e. ayand ay.
The component ay is called as “Horizontal component” whose value is a cos 6.

The component ay s called as “Vertical component” whose value is a sin 6.
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Example- Given vector V, having magnitude of 10 units & inclined at 60°. Break down the given
vector into its two component.

Solution- ;}, having magnitude(V) = 10 units and @ = 60°
Horizontal component (V,) = V cos 8

V, =10 cos60°

V,=10 % 0.5

V= B units

Now, Vertical component(V,) = V sin @

v, =10 sin 60°

V=10 x %ﬁ

V, = 104/3 units

Magnitude of a Vector-
The magnitude of a vector is shown by vertical lines on both the sides of the given vector.
la|

Mathematically, the magnitude of a vector is calculated by the help of “Pythagoras Theorem," i.e.

al = /2% + o7,

5|Page



Example- Find the magnitude of vector a (3,4).

Solution-

Given a = (3,4)

ol = VEF P
la] = /3% + 42

= |a| = I+ 16 = /25

Therefore, |a| = 5

Operation on Vector-

Vector operation such as Addition, Subtraction, Multiplication etc. can be done easily.

1. Addition of Vectors-

The two vectors a and b can be added giving the sum to be a + b. This requires joining them head to tail.

BwWus
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We can translate the vector b till its tail meets the head of a. The line segment that is directed from the tail of
vector a to the head of vector b is the vector "a + b".

Characteristics of Vector Addition-

« Commutative Law- the order of addition does not matter,i.e,a+b=b+a

« Associative law- the sum of three vectors has nothing to do with which pair of the vectors is added at the
beginning.

ie.{a+b)+c=a+(b+c0)

2. Subtraction of Vectors-

Before going to the operation it is necessary to know about reverse vector(-a).

DBWYs
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A reverse vector (-a) which is opposite of a has similar magnitude as a but pointed in opposite direction.
First, we find the reverse vector.

Then add them as the usual addition.

Such as if we wanna find vector b — a

Then,b-a=b+(-a)

3. Multiplication of Vectors-
- Scalar Multiplication-

Multiplication of a vector by a scalar quantity is called “Scaling.”

In this type of multiplication, only the magnitude of a vector is changed not the direction.
- Vector Multiplication-

Itis of two types “Cross product” and "Dot product.”

Cross Product-

The cross product of two vectors results in a vector quantity. It is represented by a cross sign between two
vectors.

axb
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Mathematical value of a cross product-

a x b=al|b|sinf n
where, |a| is the magnitude of vector a.
\a| is the magnitude of vector b.

£ is the angle between two vectors a & b

and 7 is a unit vector showing the direction of the multiplication of two vectors.

Dot product-

The dot product of two vectors always result in scalar guantity, i.e. it has only magnitude and no direction. Itis
represented by a dot in between two vectors.

a.b

Mathematical value-

a.b=|a||b|cosf
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Example- Find the scalar and vector multiplication of two vectors a and b given by 3¢ — 15 + 2k
and 17 + —27 + 3k respectively.

Solution-
Given vector a (3-1,2) and vector b (1,-2,3)

i j k
Vector product (or Cross product)=a x b=|3 —1 2
1 -2 3
LT ‘—1 2¢<32A_ ‘3 —1]:
axb= i— i+
-2 3 1 3 1 -2

@xb=1i—(7)j+ (-5)k

@xb=1i — 7j-5k

Now, |Ei % 5| = /O + =N+ (-5)2
3% B|= V75 =5v3

Mow finding magnitudes of vectoraand b
dl = /B2 + (1) + (2
@[=+v/9+T+4=+14

b = VAP 2P+ P
-y i

x|

sinf=——
|a|x|b‘

. 4 53

sinf = Jilxy1d
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Thus the Vector product is equal to 17 — ?3‘—5.@:

Scalar product (or Dot product) = @. b = \a| |b| cos @

Where @ is the angle between the vectors. But we don't know the angle between the vectors thus
another method of multiplication can be used.

a.b=(3i — 1j+2k). (17 — 25 + 3k)
a.b=3(i.i) +2(j. j) + 6(k.k)
a.b=3+2+6

a.b=11

Vector

Vector in physics can be defined as a quantity comprised of both direction and magnitude. Apart from direction
and magnitude vector not have any position, in simple it is not altered unless and until it is not displaced parallel
to itself. A vector is represented by a symbol arrow whose length will be proportional to the quantity's magnitude
and lies in the same direction of the quantity.

Some of the vector quantities include force, displacement, acceleration and distance. Scaled vector diagrams
are used to represent vector gquantities. The magnitude of the vector is usually represented by the length of the
arrow in a scalar vector diagram.

Representation of Vectors: Take velocity vector for an instant, if we want to represent a velocity vector of
magnitude five units and along the direction of a positive x axis. This can be represented by drawing a line
parallel to velocity and putting an arrow showing the direction of velocity.

5 units

v
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— =
The vectors are denoted by putting an arrow over the symbaols representing them. Thus, we write AB, B(' etc.

Sometimes a vector is represented by a single letter such as:

Force vector, '
Velocity vector: ¥
Acceleration vector: @

Linear momentum: p

Equality of Vectors

Two vectors are said to be equal if their magnitudes and directions are same. Here we are talking about two
values of the same physical quantity, i.e. we can not talk about equality of two vectors if they don't represent the
same physical quantity. For instance, one can't say that velocity vector of 5 m/s in the positive x-axis and Force
vector of 5 N also in positive x-axis are equal.

Polar and axial vectors

These notions refer to the properties of vectors under reflections, their parity properties. One
can consider reflection of the physical system in a plane [Hylleraas 1950], with the coordinate
system fixed, or equivalently inversion of all coordinate axes [Goldstein 1980] with the physical
system fixed. We will use the latier in what follows.

Let # denote a position vector in a 3D Euclidean space, and p a momentum vector in the
point. After inversion of the coordinate directions the two vectors' directions in space will be
unchanged, so the transformation rule will be:

o Polar vectors:
= —;
(D.1)

pio— pi=—pi
The angular momentum L,

L = rxp

Li = egexipr
has a different rule of transformation:

o Arial vectors:

12| Page



Li — L; = ft'_,'kﬂ':;;pi
= €k iP
= L; (D.2)

The components of polar vectors change sign during the inversion, those of axial vectors do
not. Among examples of polar vectors in these lecture notes:

r., V. u
One example of an axial vector is the vorticity:

w=Vxu

(also a vector product). The vector product of two polar or two axial vectors will be an axial
vector; considerations of sign will correspondingly show that the vector product of one polar
and one axial vector will be a polar vector.'

Axial vectors have an associated direction of rotation, a handedness: An axial vector can
equivalently be expressed by the components of an antisymmetric tensor. See the example in

Appendix B

1
Thij = TEijkivk

2
where the antisymmetric tensor ;; is a measure for the rotational property of an arbitrary
velocity field, like w.

A lefthanded coordinate system results from the inversion of a righthanded one. An axial
vector thus changes handedness because its components, referred to the coordinate systems,
do not change.

If one side of a vector equation decribing a physical relation is polar (or axial), then
also the other side must be polar {or axial]. That follows because a physical process and a
reflected copy of it must be physically equivalent.? In Chapter 4 that requirement is used in
the derivation of the velocity field for Stokes flow.
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In the preceding text we got a glimpse of some fundamental relations between vectors
and the structures called tensors.® Both can be related to the notion of differential forms,
mathematical structures which however are well beyond the scope of these lecture notes. The
introduction of tensors in this course is of the traditional operational kind for fluid mechanics:
They are structures which arise in a natural way in the description of tensions in a surface,
including supporting structures like Levi-Civitd's which contribute to simplifyving the notation.
On that background it is not easy to give a consise reason for an equation like (B.12), beyond
stating that it has a form which does not favorize any direction in space compared to the
others. In other derivations of Eq. (B.13) at the same level of description, see for instance
|[Papatzacos 2003, one neither avoids postulates.

The energetic student is therefore advised to indulge in a course of diffential surface ge-
ometry!

Triple product

Scalar triple product a- (b x c)

e Scalar triple product given by the true determinant

dy dy as
a-(bxc)= by b, by

G G G
e Your knowledge of determinants tells you that if you

— swap one pair of rows of a determinant, sign changes;
— swap two pairs of rows, its sign stays the same.
e Hence
(Ja-(bxc)=c-(axb)=b-(cx a) (Cycic permutation.)
(ia-(bxc)=—b-(axc)andso on. (Anti-cyclic permutation)
(iii) The fact that a- (b x €) = (a x b) - c allows the scalar triple product to be written as [a, b, c].
This notation is not very helpful, and we will try to avoid it below.
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Geometrical interpretation of scalar triple product

2.4

e The scalar triple product gives the volume of the parallelopiped whose sides are represented by the vectors a, b, and

-

a -

7
e

e Vector product (a x b) has
magnitude equal to the area of the base

direction perpendicular to the base.

e The component of c in this direction is equal to the height of the parallelopiped

Hence

[(a x b) - €| = volume of parallelopied

Linearly dependent vectors

25

e If the scalar triple product of three vectors
a-(bxc)=0
then the vectors are linearly dependent.

a=Ab+ uc

e You can see this immediately either using the determinant

— The determinant would have one row that was a linear combination of the others

e or geometrically for a 3-dimensional vector.

— the parallelopiped would have zero volume if squashed flat.
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Vector triple product a x (b x c)

bxc

a
f In arbitrary direction

a x (b x c) is perpendicular to (b x ¢)
but (b x c) is perpendicular to b and c.
So a x (b x ¢) must be coplanar with b and c.

=ax (bxc)=XAb+ uc -
m

(ax(bxc)); = axb xc);—as(bxc)

= a(big — ba) + a3(bicz — bay)

= (ac2 + a3c3)b1 — (a2b2 + a3b3) 1

= (a10 + a2 + a3c3)by — (a1by + ashs + asbs)
= (a-c)b — (a-b)a

Similarly for components 2 and 3: so

[@ax (bxc)] =(a-c)b—(a-b)c

Projection using vector triple product

Vv
R |
e Books say that the vector projection of any old vector v into a plane with n :
I
normal fi is !
VinpLANE = A X (v X ). !
|
e The component of v in the i direction is v - fi !
so | would write the vector projection as |

ViNpLANE = V — (v - fi)f Vv
INPLAN

e Can we reconcile the two expressions? Subst. i < a, v < b, i < ¢, into our earlier formula

ax(bxc) = (a-c)b—(a-b)c
fi x (vxfA) = (A-A)v— (A-v)i
= v — (v-A)i

e Fantastico! But v — (v - fi)f is much easier to understand, cheaper to compute!
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Vector Quadruple Product (a x b) x (¢ x d)

e \We have just learned that

px(@axr] = (p-r)a—(p-a
= (axb)x(cxd) =

|
-~
-~

e Regarding a x b as a single vector
= vgp must be a linear combination of ¢ and d

e Regarding c x d as a single vector
=> vgp must be a linear combination of a and b.

e Substituting in carefully (you check ...)

(axb)x(cxd) = [(axb)-dlc—[(axb)-cd
= [(c xd)-a]b—[(c xd)-b]a

Vector Quadruple Product /ctd

e Using just the R-H sides of what we just wrote ...
[(@xb)-cld=[(bxc)-dla+[(cxa)-db+[(axb)-dc

® S0

[(bxc)-dlat+][(cxa)-db+[axb)-dc
[(axb)-c]

= aa+L0Gb+vc .

d =

e Don't remember by ©

¢ Key point is that the projection of a 3D vector
d onto a basis set of 3 non-coplanar vectors is
UNIQUE.
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Question

Use the quadruple vector product to express the vector d = [3, 2, 1] in terms of the vectorsa =[1,2,3], b=[2,3,1]

and c = [3,1,2].
Answer
d— [(bxc)-dla+[(cxa)-db+[(@axb)-dc
N [(axDb)-(]

So, grinding away at the determinants, we find

es(axb)-c=-18and(bxc)-d=6

s(cxa)-d=-12and (axb)-d=-12.
So

1
d = —(6a—12b — 12c)
—18

1
= g(—a + 2b + 2c)

Geometry using vectors: Lines

211

e Equation of line passing through point a; and lying in
the direction of vector b is

r=a+ b

Point r traces
out line.

e NB! Only when you make a unit vector in the dirn of b does the parameter take on the length units defined by a:

r=a+Xb

e For a line defined by two points a; and a»

r=a; +fS(a - a)

e or the unit version ...

r=a;+ ANax—ai)/|laz — a;
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The shortest distance from a point to a line 212

e Vector p from ¢ to ANY line point r is
p=r—c=a+Xb-c=(a—c)+ )b
which has length squared

pPP=(@—-c’+M+2)\a—c)-b.

e Easier to minimize p? rather than p itself.

d , .
P =0 when A=-(a—c)-b.

e So the minimum length vector is p=(a—c)—((a—c)-b)b.
No surprise! It’s the component of (a — c) perpendicular to b.
e We could therefore write using the “book™ formula ...

p = bx[(a—c)xb]
= Pmin = |BX[(EI—C)XB]|:|(H—C)XB| -

Shortest distance between two straight lines 2.13

e Shortest distance from point to line is along the perp line

e = shortest distance between two straight lines is along mutual perpendicular.

e The lines are:
r=a+ b r:c-l-p.fl

e The unit vector along the mutual perp is

o
(=Y

X

ﬁ:

o
X

(Yes! Don't forget that b x d is NOT a unit vector.)

X

e The minimum length is therefore the component of (a — c) in this direction
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o
I

Pmin = (H — C) :

=
A -4
o

Example : the functions Xk

Suppose that f(X)=xk, where x>0 and K is an integer. Then
(1) (X)=xk+1k+1, (12f) (X)=xK+2(k+1) (k+2),
and, more generally,
(Inf)(X)=K!(n+K) IXn+k=T"(k+1)(n+k+1)xn+k.(2.2)
Suppose now that K is not a positive integer. Then we still have
(InH)(X)=1(k+1)(k+2)-- - (n+K)xn+k=I"(k+1)['(N+Kk+1)Xn+k.

We have now shown that (2.2) holds whenever n is a positive integer.
Repeated integrals

Given a function f(x) defined when x>0, we can form the indefinite integral
of f from 0 to X, and we call this (If)(X); thus

(If)(x)=Jxof (t)dlt.
If we repeat this process we get the 'second integral’
(120) (x)=lxo(If) () dt=[xo(Jrof (s)dIs)dl,
and another integration gives the 'third integral’

(IsF) (x)=Jxo[[ro(Jsof(u)du)ds]dt.(2.1)

This looks very complicated (and the formula for the n-th integral looks
even more complicated), so it is a good idea to look at some simple
cases. " Example : the functions Xk
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Suppose that f(X)=xk, where x>0 and K is an integer. Then
(1) (X)=xk+1k+1,(12f) (X)=xk+2(k+1) (k+2),
and, more generally,
(Inf)(X)=K!(n+K) IXn+k=T"(k+1)[(n+k+1)xn+k.(2.2)
Suppose now that K is not a positive integer. Then we still have
(InH)(X)=1(k+1)(k+2)-- - (n+K)xn+k=I"(k+1)['(N+Kk+1)Xn+k.

We have now shown that (2.2) holds whenever n is a positive integer.
Cauchy's resuit

It was Cauchy who showed us how we can look at integrals such as (2.1) in a
simpler way, and he showed how we can reduce the N repeated integrals in
(2.1) to just one integral. To be precise, he showed that

(Inf)(x)=1(n—1)! Jxo(x—t)n-1f(t)dt.(2.3)
There is nothing to prove here when N=1 because with n=1, (2.3) becomes
(1) (x)=10!fxo(x—t)of(t)dt
which is just the definition of (If)(X). We shall now prove (2.3) when n=2. Let
g(x)=lxo(x—t)f(t)dt ;(2.4)

this is the right handside of (2.3) when N=2 so we want to show
that g(x)=(l2f)(x). Observe that

g(x)=x/xof (t)dt—[xotf(t)dt,(2.5)

and if we differentiate both sides of this equation with respect to X (and use the
product formula for the first term) we get

g/ () =[of Q) dt+xF()]-XFX)=lof () dt=(1F) (X).

Now (2.4) implies that g(0)=0, so we now have
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9(x)=9(x)-g(0)=lxog (t)dt=lxo(If)(t)dt=(12f)(x)

as required. The proof for a general N is similar. We expand the term (X—t)n-1 by
the Binomial Theorem, and then write g(X) in the manner of (2.5) with all the
terms Xj outside the integral sign. The argument then goes as before, and we
shall now assume that (2.3) is true for every positive integer n. "

Fractional integrals

The question now is what is (l«f)(X) when a is any positive number? Following
exactly the same idea that we used for the factorial function, we now use
Cauchy's formula (2.3) as the basis for our definition of (l«f)(X). In fact, for
every positive o« we DEFINE

(1) (X)=1T(a) xo(x—t)a-1f(t)dt.

We recall from the previous article that if a is a positive integer,
then I'(a)=(a—1)! so this definition of (l«f)(X) agrees with (2.3) when «a is a
positive integer. "

Example : the functions Xk again

Let us now see what (laf)(X) is when f(X)=xx and a is any positive number. Our
definition implies that

(1af) (X)=1T(a)fxo(x—t)a-1tkdt,
and if we now make the substitution U=t/X, we obtain
(1af) (X)=Xa+kI'(@)[10uk(1—U)a-1du.

We now have another problem, for there is no simple way to evaluate this
definite integral. In fact, many people have studied this integral at great length
and, rather remarkably, it turns out to be very closely related to the Gamma
function. In fact, if we write

B(x,y)=J1otc-1(1-t)y-1dlt
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(this is called the Beta function), where X and Yy are positive, then we get

BX.y)=T'(X)I'(y)I'(x+y).

Using this, we now see that
(1af) (X)=Xa+k['(2) B(k+1,8)=Xa+kI[(a) ([ (k+1)[(@)(a+k+1))=I(k+1)[(a+k+1)Xa+k,

which agrees with (2.2) in the case when a is an integer. In conclusion, we have
now shown that if f(X)=xk, and if x>0and a>0, then

(1af) (X)=T(k+1)T(a+k+1)xa+k

Example 1 Let us evaluate (11/2f)(X) when f(X)=xV=x12. According to the
formula, we have

(1121 (X)=T(3/2)T 2)x=T"(3/2)x=12T(1/2)x=1\2x.

Example 2 Show that with f(x)=x2,

(1312f) (x)=321057\x772.

Repeated integration again

Suppose that f(X)=xk, and that a and b are positive. Then
(IbH)(X)=T"(k+1)["(b+k+1)Xo+k=Ag(X),
say, where g(X)=Xb+k. This gives
la(Iof) (X)=AX(lag) (X)=I"(k+1)I"(b+k+1)xI"(b+k+1)"(a+b+k+1)xa+b+k=(la+bf)(X).
We have now shown that if f is any power of X, then

(1a(16F)) (x)=(la+bf) (x)=(Io(1f)) (X).
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In fact, this holds for all functions f but this is not easy to prove. Indeed,

we shall show in the next article that the corresponding result does NOT
hold for fractional derivatives.

The Unit Tangent and the Unit Normal Vectors

The Unit Tangent Vector

The derivative of a vector valued function gives a new vector valued function that is
tangent to the defined curve. The analogue to the slope of the tangent line is the
direction of the tangent line. Since a vector contains a magnitude and a direction, the
velocity vector contains more information than we need. We can strip a vector of its
magnitude by dividing by its magnitude.

Definition of the Unit Tangent Vector

Let r(t) be a differentiable vector valued function and v(t) = r'(t) be the velocity
vector. Then we define the unit tangent vector by as the unit vector in the direction of
the velocity vector.

v(t)

TH) = ——
IV

Example
Let
ret) = ti+e'j-3t%k

Find the T(t) and T(0).

Solution
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We have
v(t) = r't) = i+e'j-6tk
and
v || = Jl+e® +367
To find the unit tangent vector, we just divide

TG = vig) iteli— bk

vl M1+ ™ +364

To find T(0) plug in O to get

. o, . .
T(0) = i+e j—6{k _ i LH_LJ_

JdPse0f V2 W2 W2

The Principal Unit Normal Vector

A normal vector is a perpendicular vector. Given a vector v in the space, there are infinitely
many perpendicular vectors. Our goal is to select a special vector that is normal to the unit
tangent vector. Geometrically, for a non straight curve, this vector is the unique vector that point
into the curve. Algebraically we can compute the vector using the following definition.

Definition of the Principal Unit Normal Vector

Let r(t) be a differentiable vector valued function and let T(t) be the unit tangent
vector. Then the principal unit normal vector N(t) is defined by

()
N(t) =
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Tl

Comparing this with the formula for the unit tangent vector, if we think of the unit
tangent vector as a vector valued function, then the principal unit normal vector is the
unit tangent vector of the unit tangent vector function. You will find that finding the
principal unit normal vector is almost always cumbersome. The quotient rule usually
rears its ugly head.

Example
Find the unit normal vector for the vector valued function
rt) = ti+t%]

and sketch the curve, the unit tangent and unit normal vectors when t = 1.

Solution
First we find the unit tangent vector

i+ 2

A1+ 42

Now use the quotient rule to find T'(t)

T(1) =

+4¢ A=+ 280401+ 487
1421."22 241421."2

TV =
© 1+ 4¢*

Since the unit vector in the direction of a given vector will be the same after multiplying the
vector by a positive scalar, we can simplify by multiplying by the factor

(144514 4¢3
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The first factor gets rid of the denominator and the second factor gets rid of the fractional power.
We have

T+ +4:5 Y2 = 1+ D2/ -G +26048 = —da+25
Now we divide by the magnitude (after first dividing by 2) to get

—28 +

O = e

Now plug in 1 for both the unit tangent vector to get

1 2 2 1
T = —=it+—= Nl = -—fi+—j
VCETE T TR

The picture below shows the graph and the two vectors.

3_

Tit)

\\\ER? ()
T L o S

—_
—=u
[

Tangential and Normal Components of Acceleration

Imagine yourself driving down from Echo Summit towards Myers and having your
brakes fail. As you are riding you will experience two forces (other than the force of
terror) that will change the velocity. The force of gravity will cause the car to
increase in speed. A second change in velocity will be caused by the car going around
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the curve. The first component of acceleration is called the tangential component of
acceleration and the second is called the normal component of acceleration. As you
may guess the tangential component of acceleration is in the direction of the unit
tangent vector and the normal component of acceleration is in the direction of the
principal unit normal vector. Once we have T and N, it is straightforward to find the
two components. We have

Tangential and Normal Components of Acceleration

The tangential component of acceleration is

&l :,{I-T:v-a
! 1]

and the normal component of acceleration is

_ N I LA #
ay =aww = v xal

and

a = ayN+arT

Proof
First notice that

v=|vIT and T = ||ITIN
Taking the derivative of both sides gives

a =V = |VI[FT+[VIT = VI T+]VIT

| N

This tells us that the acceleration vector is in the plane that contains the unit tangent
vector and the unit normal vector. The first equality follows immediately from the
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definition of the component of a vector in the direction of another vector. The second
equalities will be left as exercises.

Example
Find the tangential and normal components of acceleration for the prior example

r(t) = ti+tj

Solution
Taking two derivatives, we have
a(t) = r'(t) = 2

We dot the acceleration vector with the unit tangent and normal vectors to get

4t
aplf) =a 7T = .J’_

1+ 4
alfl = a o N = 2
s o 2

1+4¢
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Vector Operators: Grad, Div and Curl

In the first lecture of the second part of this course we move more to consider properties
of fields. We introduce three field operators which reveal interesting collective field
properties, viz.

e the gradient of a scalar field,

e the divergence of a vector field, and

e the curl of a vector field.

There are two points to get over about each:

e The mechanics of taking the grad, div or curl, for which you will need to brush up
your multivariate calculus.

e The underlying physical meaning — that i1s, why they are worth bothering about.

In Lecture 6 we will look at combining these vector operators.

5.1 The gradient of a scalar field

Recall the discussion of temperature distribution throughout a room in the overview,
where we wondered how a scalar would vary as we moved off in an arbitrary direction.
Here we find out how.

If U(r) = U(x, y,z) is a scalar field, ie a scalar function of position r = [x,y, z] in 3
dimensions, then its gradient at any point is defined in Cartesian co-ordinates by
ou _ ou _ ou -
gradlU = —1 +

0 t )tk (5.1)

30| Page



It is usual to define the vector operator which is called "del” or “nabla”

.0 .8 ~ d
Then
gradU = VU . (5.3)

Note immediately that VU is a vector field!

Without thinking too carefully about it, we can see that the gradient of a scalar field
tends to point in the direction of greatest change of the field. Later we will be more
precise.

& Worked examples of gradient evaluation

1. U=x?
8. 8. . 0.\ .. .
=:-VU—(§|+51+§I(>X = 2x1. (5.4)
2. U=r?
o= x+y 42 (5.5)
. 6_\ 6,‘ aﬂ 2 2 2
= VU = (ax' + ayj + azk)(x +y +Zz7) (5.6)
= 2xi+2yj+2zk = 2r. (5.7)

3. U=c-r, where ¢ is constant.

.0 .0 ~ 0 . . -
= VU = (Ia '”5 + RE){c1x+ng+53z}—c1|+521+53k—t: .

(5.8)
4. U = U(r), where r = \/(x?> + y? + z2). NB NOT U(r).
U is a function of r alone so dU/dr exists. As U = U(x, y, z) also,
oU _duer U _dudr U _duor 59
Ox  dr dx dy  drdy 8z drdz - '
ou. ouU_. oU. du (or, 0or_. Or.
= VU = al-l-a + 3z =4 (6x'+ 5yj+ 6zk) (5.10)
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But r = /x2 + y2 + 22, so Or/0x = x/r and similarly for y, z.

dU [ xi+ yj+ zk du r)
#V“—E(f)—ﬁ(? : (5.11)

5.2 The significance of grad

If our current position is r in some scalar field U (Fig. 5.1(a)), and we move an in-
finitesimal distance dr, we know that the change in U is

ou ou ou
dU—adx+§dy+§dz. (5.12)
But we know that dr = (idx + jdy + kdz) and VU = (idU/8x + joU /8y + kdU/8z),
so that the change in U is also given by the scalar product

dU =VU-dr. (5.13)
MNow divide both sides by ds

dl dr

Y. — . 5.14

ds ds ( )

But remember that |dr| = ds, so dr/ds is a unit vector in the direction of dr.

(b)

Figure 5.1: The directional derivative: The rate of change of U wrt distance in direction d is VU - d.

This result can be paraphrased (Fig. 5.1(b)) as:

e gradU has the property that the rate of change of U wrt distance in a particular
direction (d) is the projection of gradU onto that direction (or the component
of gradU in that direction).
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The quantity dU/ds is called a directional derivative, but note that in general it has a
different value for each direction, and so has no meaning until you specify the direction.

We could also say that

e At any point P, gradU points in the direction of greatest change of U at P, and
has magnitude equal to the rate of change of U wrt distance in that direction.

Figure 5.2: VU is in the direction of greatest (positivel) change of U wrt distance. (Positive ="uphill”.)

Another nice property emerges if we think of a surface of constant U — that is the locus
(x,y,z) for U(x, y, z) = constant. If we move a tiny amount within that iso-U surface,
there is no change in U, so dU/ds = 0. So for any dr/ds in the surface

dr
VU-— = 0. 5.15
1 (5.15)

But dr/ds is a tangent to the surface, so this result shows that
| e gradU is everywhere NORMAL to a surface of constant U. |

gradU

Surfaces of constant U Surface of constant U
"Level Surfaces"

Figure 5.3: gradl is everywhere NORMAL to a surface of constant U,
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The divergence computes a scalar quantity from a vector field by differentiation.
If a(x, v, z) is a vector function of position in 3 dimensions, that is a = ai+ a.j + ask.
then its divergence at any point is defined in Cartesian co-ordinates by

831 Bag 383

We can write this in a simplified notation using a scalar product with the V vector
differential operator:

di _(i2,;2 Rﬁ =V 5.17
|va—|ax+jay+ 37 ) a=V-a (5.17)

Notice that the divergence of a vector field is a scalar field.

& Examples of divergence evaluation

a diva
1) xi 1
2) r(=xi+yj+zk) 3
3) r/r? 0
4) rc, for c constant (r-c)/r
We work through example 3).

The x component of r/r? is x.(x* + y? + z?)~%/2, and we need to find 8/8x of it.
C%x.(x2 + 2427 = 1.3+ 2+ 2Py x_??’(x2 + y? + 22)2 2x
= r?(1-3r7) | (5.18)
The terms in y and z are similar, so that
div(r/r’) = r?(3-3(+y " +2)r ) =r>(3-3) (5.19)

=0

5.4 The significance of div

Consider a typical vector field, water flow, and denote it by a(r). This vector has
magnitude equal to the mass of water crossing a unit area perpendicular to the direction
of a per unit time.
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Now take an infinitesimal volume element dV and figure out the balance of the flow
of a in and out of dV.

To be specific, consider the volume element dV = dxdydz in Cartesian co-ordinates,
and think first about the face of area dxdz perpendicular to the y axis and facing out-

wards in the negative y direction. (That is, the one with surface area dS = —dxdzj.)
z
i dz
ds = | ds =
—dxdzf i +dxdz §
- i

dy
X

Figure 5.4: Elemental volume for calculating divergence.

The component of the vector a normal to this face is a-]J = a,, and is pointing inwards,
and so the its contribution to the OUTWARD flux from this surface is

a-dS = —ay(xy z)dzdx, (5.20)

(By the way, flux here denotes mass per unit time.)

A similar contribution, but of opposite sign, will arise from the opposite face, but we
must remember that we have moved along y by an amount dy, so that this OUTWARD

amount I1s
da,
ay(x,y+dy,z)dzdx = | a, + ady dxdz (5.21)
The total outward amount from these two faces is
da, Oa
—Ydydxdz = —2dV 5.22
5, dydxdz =7 (5.22)

Summing the other faces gives a total outward flux of

0a; | 03y | Dz
Ox Ay 0z

) dvV=V-a dV (5.23)
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So we see that
The divergence of a vector field represents the flux generation per unit volume at

each point of the field. (Divergence because it is an efflux not an influx.)

Interestingly we also saw that the total efflux from the infinitesimal volume was equal
to the flux integrated over the surface of the volume.

(NB: The above does not constitute a rigorous proof of the assertion because we have
not proved that the quantity calculated is independent of the co-ordinate system used,
but it will suffice for our purposes.)

5.5 The Laplacian: div(gradU) of a scalar field

Recall that gradU of any scalar field U is a vector field. Recall also that we can compute
the divergence of any vector field. So we can certainly compute div (gradU), even if
we don't know what 1t means yet.

Here i1s where the ¥V operator starts to be really handy.

- . 0 - 0 .0 .0 . 0
V-(VU) = (:ax +jay +kaz)'(('ax+’ay+kaz>u)(5'z4}

G .0 . 0 . a G . 4
Z((Iaﬁ'ja—yﬁ'ka) (Iaﬁ']a"‘kg))U(f)?S}
02 o2 82
_ (ax2 +33+ 522) U (5.26)
FuU U U
= (5){2 + 5y azz> (5.27)
(5.28)

This last expression occurs frequently in engineering science (you will meet it next
in solving Laplace's Equation in partial differential equations). For this reason, the
operator V7 is called the “Laplacian”

e* o &
2ry
VU = (5){2 + 3y + 522) U (5.29)
Laplace's equation itself is
ViU=0 (5.30)
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& Examples of VU evaluation
U VU

1) rA(=x*+y*+2°) 6
2) xy?zZ? 2x7% + bxy’z
3) 1/r 0

Let's prove example (3) (which is particularly significant — can you guess why?7).

1r=(C+y’+2°)71? (5.31)

iG] 8

SO+ = L (R4 A (5.32)
= (P + P+ 27 4 3xx (X2 + ¥ + 2°) V/5.33)
= (1/r*) (=1 +3x%/r?) (5.34)

Adding up similar terms for y and z

1 1 2 2 2
velo L3 sty X)) (5.35)
ror re

5.6 The curl of a vector field

So far we have seen the operator V applied to a scalar field VU; and dotted with a
vector field V - a.

We are now overwhelmed by an irrestible temptation to
e cross it with a vector field V x a

This gives the curl of a vector field

V x a = curl(a) (5.36)

We can follow the pseudo-determinant recipe for vector products, so that

i 7 k
Vxa = % % Eflz (remember it this way) (5.37)
a, a, a
Da: Oay\. dax 0Oa:z\ . da, Oax\ -~
- (ay_3z)l+(62_6x)“'+(3x_6y)k (5.38)
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& Examples of curl evaluation

a V xa

1) —yi+xj 2k
2)  x%y%k  2x%yi— 2xy3

5.7 The signficance of curl

Perhaps the first example gives a clue. The field a = —yi + xj is sketched in Figure
5.5. (It is the field you would calculate as the velocity field of an object rotating with
w = [0,0,1].) This field has a curl of 2k, which is in the r-h screw sense out of the
page. You can also see that a field like this must give a finite value to the line integral
around the complete loop .fc a-dr.

y
-

Figure 5.5: A rough sketch of the vector field —yi + xj.

In fact curl is closely related to the line integral around a loop.

The circulation of a vector a round any closed curve C is defined to be §-a- dr
and the curl of the vector field a represents the vorticity, or circulation per unit
area, of the field.

Our proof uses the small rectangular element dx by dy shown in Figure 5.6.
Consider the circulation round the perimeter of a rectangular element.

The fields in the x direction at the bottom and top are

Oa,
a(x,y. z) and a(x,y+dy z)=al(xy z)+ %dy. (5.39)
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ay(x,y,z)
~a
Q
<
ay(x+dx,y,z)

dx
y P x+dx
a,(x.y,z)

Y

Figure 5.6: A small element used to calculate curl.

and the fields in the y direction at the left and right are

0%, (5.40)

ay(x,y,z) and ay(x+dx,y.z)=a(xy z)+ I

Starting at the bottom and working round in the anticlockwise sense, the four con-
tributions to the circulation dC are therefore as follows, where the minus signs take
account of the path being opposed to the field:

dC = +[a, dx] + [a,(x + dx,y,z) dy] — [ax(x,y + dy, z) dx] — [a, dy](5.41)
= +[a, dx] + [(a,, + %d}c) dy] - [(ax(y} + %—?dy) dx] - [a, dy]
Oa, Oa,
= (a - §> dx dy
= (Vxa)-dS

where dS = dxdyk.

NB: Again, this is not a completely rigorous proof as we have not shown that the result
is independent of the co-ordinate system used.
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(GREEN’S, STOKES’S, AND GAUSS’S THEOREMS

Let D be a closed bounded region in R? such that its boundary D consists
of finitely many simple closed curves that are oriented in such a way that
D in on the left as one traverses dD. Let F(x,y) = M(xz,y)i+ N(x,y)j be

a vector field of class C'1.

ON M

1. (Green’s Theorem) Mdx+ Ndy = // (d — 8 ) dA.
aD Oz dy

D

2. (Vector form of Green’s Theorem) F-ds = /f{\? xF)-kdA.
ap

3. (Divergence Theorem in the plane) If n is the outward unit

normal vector to D, then jtg F-nds = f V- -FdA.
D

i
D

Let S be a bounded, oriented surface in B* such that its boundary 98
consists of finitely many simple closed curves that are oriented consistently

with S. Let F be a vector field of class C1.

4. (Stokes’s Theorem) F.ds = f/(‘? x F) - dS.
25
s

Let W be a bounded solid region in R? such that its boundary OW consists
of finitely many closed orientable surfaces that are oriented by unit normals

n pointing away from W. Let F be a vector field of class C.

5. (Gauss’s Theorem) #F -dS = #{F -n)dS = f/ V- -FdV
aw

aw W
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UNIT-2

Mechanics
Definition

The branch of physics that deals with the action of forces on bodies and with motion comprised of
kinetics, statics and kinematics. It is the study of the action of forces on the body and the
corresponding reaction of the body to the environment.

Types of Mechanics

Kinematics: Study of motion of objects without taking into account the factor which causes the
motion that is nature of force

Projectiles: A particle when thrown into space and moves in two dimensions under the influence
of only gravity and constant acceleration is called projectile. The path traversed by the projectile
is called trajectory. The trajectory of a projectile which is moving under the influence of a constant
acceleration is a parabola

Circular Motion: When a particle moves in a plane such that it maintains a constant distance
from a fixed or moving point then the motion is said to be a Circular motion with respect to that
fixed point.

Uniform and Non-uniform motion:
Relative Velocity:

Newton’s Law of Motion:

Law of gravitation

Center of Mass:

Collisions rotational Motion, fluid Mechanics
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Comparison between Uniform and Non-Uniform Circular Motion

Uniform Circular Motion Non-uniform Circular Motion
Speed is constant Speed is variable
Angular speed(w) is constant Angular speed (w) is variable
Angular acceleration is zero Angular acceleration is non-zero
Tangential acceleration is zero Tangential acceleration is non-zero
Modulus of acceleration is constant but the Modulus of acceleration is variable and the vector
vector will be variable will also be variable
Acceleration is directed always towards the Acceleration is directed always away from the
center center

Relative velocity

When you are traveling in a car or bus or train, you see the trees,
buildings and many other things outside going backwards. But are they
really going backwards? No, you know it pretty well that it’s your
vehicle that is moving while the trees are stationary on the ground. But
then why do the trees appear to be moving backwards? Also the co-
passengers with you who are moving appear stationary to you despite
moving.

It’s because in your frame both you and your co-passengers are moving
together. Which means there is no relative velocity between you and the
passengers.Whereas the trees are stationary while you are moving.
Therefore trees are moving at some relative velocity with respect to you
and the other passenger. And that relative velocity is the difference of
velocities between you and the tree.
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The relative velocity is the velocity of an object or observer B in the rest
frame of another object or the observer A. The general formula of
velocity is : Velocity of B relative to Ais=v'b—V_ a

This is the only formula that describes the concept of relative velocity.
When two objects are moving in the same direction, then

Vab = Va + Up

When two objects are moving in the opposite direction, then

Eab - ﬁa — Eb

Lets us understand the concept of relative velocity with this example.

Consider two trains moving with same speed and in the same direction.
Even if both the trains are in motion with respect to buildings, trees
along the two sides of the track, yet to the observer of the train, the
other train does not seem to be moving at all. the velocity of the train
appears to be zero.
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Suppose you are in a car moving at 50mph.The 50 mph is your relative
velocity as compared to the surface of the earth.At the same time if | am
sitting next to you your relative velocity compared to me is zero. If we
were on a bus and you walked forward at 1 mph, your relative velocity
on the earth would be 51 mph and your relative velocity compared to
me would be 1 mph. Relative velocity is simply any objects speed
compared to any other object regardless of its speed.

Newton's First Law of Motion:

I. Every object in a state of uniform motion tends to
remain in that state of motion unless an external
force is applied to it.

This we recognize as essentially Galileo's concept of inertia, and this is often
termed simply the "Law of Inertia™.

Newton's Second Law of Motion:

Il. The relationship between an object's mass m, its
acceleration a, and the applied force F is F = ma.
Acceleration and force are vectors (as indicated by
their symbols being displayed in slant bold font); in
this law the direction of the force vector is the same
as the direction of the acceleration vector.

This is the most powerful of Newton's three Laws, because it allows quantitative
calculations of dynamics: how do velocities change when forces are applied.
Notice the fundamental difference between Newton's 2nd Law and the dynamics
of Aristotle: according to Newton, a force causes only a change in velocity (an
acceleration); it does not maintain the velocity as Aristotle held.

This is sometimes summarized by saying that under Newton, F = ma, but under
Aristotle F = mv, where v is the velocity. Thus, according to Aristotle there is
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only a velocity if there is a force, but according to Newton an object with a
certain velocity maintains that velocity unless a force acts on it to cause an
acceleration (that is, a change in the velocity). As we have noted earlier in
conjunction with the discussion of Galileo, Aristotle's view seems to be more in
accord with common sense, but that is because of a failure to appreciate the role
played by frictional forces. Once account is taken of all forces acting in a given
situation it is the dynamics of Galileo and Newton, not of Aristotle, that are
found to be in accord with the observations.

Newton's Third Law of Motion:

Ill. For every action there is an equal and opposite
reaction.

This law is exemplified by what happens if we step off a boat onto the bank of a
lake: as we move in the direction of the shore, the boat tends to move in the
opposite direction (leaving us facedown in the water, if we aren't careful!).

The Four Fundamental Forces of Nature

The Four Fundamental Forces of Nature are Gravitational force, Weak
Nuclear force, Electromagnetic force and Strong Nuclear force. The weak and
strong forces are effective only over a very short range and dominate only at
the level of subatomic particles. Gravity and Electromagnetic force have
infinite range. Let’s see each of them in detail.

The Four Fundamental Forces and their strengths

1. Gravitational Force — Weakest force; but infinite range. (Not part
of standard model)

2. Weak Nuclear Force — Next weakest; but short range.

3. Electromagnetic Force — Stronger, with infinite range.

4. Strong Nuclear Force — Strongest; but short range.
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Gravitational Force

The gravitational force is weak, but very long ranged. Furthermore, it is always
attractive. It acts between any two pieces of matter in the Universe since
mass is its source.

Weak Nuclear Force

The weak force is responsible for radioactive decay and neutrino interactions.
It has a very short range and. As its name indicates, it is very weak. The weak
force causes Beta decay ie. the conversion of a neutron into a proton, an
electron and an antineutrino.

Electromagnetic Force

The electromagnetic force causes electric and magnetic effects such as the
repulsion between like electrical charges or the interaction of bar magnets. It
Is long-ranged, but much weaker than the strong force. It can be attractive or
repulsive, and acts only between pieces of matter carrying electrical

charge. Electricity, magnetism, and light are all produced by this force.

Strong Nuclear Force

The strong interaction is very strong, but very short-ranged. It is responsible
for holding the nuclei of atoms together. It is basically attractive, but can be
effectively repulsive in some circumstances. The strong force is ‘carried’ by
particles called gluons; that is, when two particles interact through the strong
force, they do so by exchanging gluons. Thus, the quarks inside of the protons
and neutrons are bound together by the exchange of the strong nuclear force.
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Fundamental Force Particles

Particles | Force Carrier Relative
Force Experiencing | Particle I Strength®
Gravity : graviton
acts between all particles | (ot yet infinity much
objects with mass with mass | ghserved) weaker
W;:::sme quarksand | W', w-, 2° short
A leptons (w and z) range
Electromagnetism
acts between electrically Y nfinit
electrically charged charged |photon} Ll
particles 1’
Strong Force** guarks and g short much
binds quarks together gluons (gluon) range stronger

What is Pseudo Force?

A Pseudo force (also called as fictitious force, inertial force or da€™Alembert force) is
an apparent force that acts on all masses whose motion is described using a non-
inertial frame of reference frame, such as rotating reference frame.
Pseudo force comes in effect when the frame of reference has started acceleration
compared to a non-accelerating frame.
The force F does not arise from any physical interaction between two objects, but rather
from the acceleration 84€"a&€™ of the non-inertial reference frame itself. As a frame can
accelerate in any arbitrary way, so can pseudo forces be as arbitrary (but only in direct
response to the acceleration of the frame). However, four pseudo forces are defined for
frames accelerated in commonly occurring ways: one by relative acceleration of the
origin in a straight line (rectilinear acceleration); two involving rotation: Coriolis force and
and fourth called Euler force, caused by a variable rate of rotation.

Examples of Pseudo Force:

For example if you consider a person standing at a bus stop watching an accelerating
car, he infers that a force is exerted on the car and it is accelerating. Here there is no
problem and the pseudo force concept is not required

But, if the person inside the accelerating car is looking at the person standing at the bus
stop, he finds that the person is accelerating with respect to the car, though no force is
acting on it. Here, the concept of pseudo force is required to convert the non-inertial
frame of reference to an equivalent inertial frame of reference.
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Another example Consider a ball hung from the roof of a train by means of an
inextensible string. If the train is at rest or is moving with a uniform speed in a straight
line the string will be vertical. A passenger will infer that the net force acting on the ball
is zero.

If the train begins to accelerate, then the string will be making an angle with respect to
the vertical. For the passenger, there are only two forces and they are not collinear. But,
the ball remains apparently in a state of equilibrium (as long as the acceleration of the
train is constant). Here, the concept of pseudo force is required.

(m+ M)a

@
ma —q_{— -ma

-ma

(m+ M)a

(m+ M)a

Figure 1:

Top panel: accelerating car of mass M with passenger of mass m. The force from the axle is (m +
M)a. In the inertial frame, this is the only force on the car and passenger.

Center panel: an exploded view in the inertial frame. The passenger is subject to the accelerating
force ma. The seat (assumed of negligible mass) is compressed between the reaction force 4€“ma
and the applied force from the car ma. The car is subject to the net acceleration force Ma that is the
difference between the applied force (m + M)a from the axle and the reaction from the seat 8”ma.

Bottom panel: an exploded view in the non-inertial frame. In the non-inertial frame where the car is
not accelerating, the force from the axle is balanced by a fictitious backward force 8”(m + M)a, a
portion 4”Ma applied to the car, and 8”ma to the passenger. The car is subject to the fictitious force

a”Ma and the force (m + M)a from the axle. The difference between these forces ma is applied to
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the seat, which exerts a reaction 48”ma upon the car, so zero net force is applied to the car. The seat
(assumed massless) transmits the force ma to the passenger, who is subject also to the fictitious

force a”ma, resulting in zero net force on the passenger. The passenger exerts a reaction force
a”ma upon the seat, which is therefore compressed. In all frames the compression of the seat is the
same, and the force delivered by the axle is the same.

Coriolis Force

To explain the Coriolis force it is first necessary to explain Coriolis acceleration.

When an object simultaneously rotates about a point and moves relative to that point, an
acceleration results from this. This acceleration is called Coriolis acceleration.

To illustrate this acceleration, consider a particle P rotating in a plane about point O with
a constant angular velocity w, and moving radially outwards with a velocity v,. The
Coriolis acceleration is denoted by a.. It acts in the circumferential direction
(perpendicular to v,).
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By applying Newton’s Second Law 1n the direction of a., we can
determine the force acting on the particle P due to this acceleration. Call

this force F,.
F =ma =2m(w-v.) (1)

where m 1s the mass of the particle.

To gain an intuitive understanding of the acceleration a, think about what happens as the
particle P moves radially outwards. It traces a circle of progressively larger radius. Given
that the angular velocity w is constant, and the velocity of the particle tangent to the circle
is equal to wR (where R is the radius of the circle), the tangential (circumferential)
velocity must then increase as a result. The figure below shows the tangential

velocity vy of the particle P at two consecutive

instants.

.
.
.
-

At instant 1:

v = WR,

50| Page



At instant 2:

vy, = WR,
Since Ry > Rj,

Vra >V

Therefore there 1s an acceleration a, (in the direction shown) due to this

tangential increase in velocity.

Thus, the particle P must have a restraining force F, acting on it in the

direction of a,., in order to maintain its radially outward motion.

Note that this restraining force F . 1s not necessarily the total force acting

on the particle P. It 1s only the part of the force that 1s due to the
combined effect of the particle simultaneously rotating about point O and

moving radially outwards from point O.
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Now, let’s define a reference frame that has origin at point O and is
rotating at angular velocity w. If the restraining force F, were to vanish
(or at least decrease), the particle P would travel a curved path relative to
this (rotating) reference frame (as will be explained). The apparent force
causing the particle to curve 1s called the Coriolis force. Note however,
that the Coriolis force 1s a fictitious force. and not a real force. since it 1s
based on motion relative to a non-inertial reference frame. that 1s
rotating. Nevertheless, it can be an informative way of looking at a

problem, as will be shown.

For example, let’s say we have a merry-go-round rotating with a constant
angular velocity. On the merry-go-round there is a ball rolling outwards

from the center with a radial velocity v, (this 1s the velocity of the ball

relative to the merry-go-round). This results in the ball moving ina

straight line relative to the merry-go-round (in the direction of v,). The
force that maintains this straight-line motion 1s the restraining force F,

(calculated before).
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Now, let’s say there 1s no restramning force (F,. = 0). This would result 1n
the ball not being able to increase its tangential speed (since a. =0 by

equation (1)). Consequently, the ball must “fall back™, which will result
in the ball moving along a curved path relative to the merry-go-round.
Thus, from the point of view of an observer sitting on the merry-go-
round, the ball would appear to be “pushed” by an imaginary force

(called the Coriolis force) causing 1t to curve.

The figure below shows the motion of the ball relative to the merry-go-
round, as the merry-go-round rotates between positions 1 and 2. The
figure 1llustrates two cases: The first case 15 where the restraining force

F, 1s present — this 1s 1llustrated with the straight (green) line. The second

case 15 Where F, = 0 — thus 1s 1llustrated with the blue curve.

The black arrow shows the motion of the ball relative to an inertial
reference frame (ground) for the case where there are no external forces

acting on the ball in the plane of the merry-go-round.
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The red dot 1s a reference point
marked on the merry-go-round.
It 1s defined as coincident with
the starting position of the ball,
at position 1

In the above figure:
The starting position of the ball 1s denoted by “1°

In the presence of a restraining force F,. . the final position of the ball 1s

denoted by “2a’

If the restraming force F. = 0 , the final position of the ball 1s denoted by
:zh:
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As mentioned already, the green line represents the motion of the ball

relative to the merry-go-round for the case where F, 1s present. The blue

curve represents the motion of the ball relative to the merry-go-round for
the case where F. = 0 (but note that even 1f F. = 0, there may still be

other forces acting on the ball in the plane of the merry-go-round).

For the situation where F, 1s not equal to zero but 1s less than the
restraining force in the first case, the path traveled by the ball (relative to
the merry-go-round) would follow a curved path that lies somewhere 1n

between the green line and the blue curve.

From the point of view of an observer sitting on the merry-go-round (and
moving with it), the Coriolis force is the apparent force that appears to be

acting on the ball. causing 1t to veer to the right.
More specifically, the Coriolis force acts in a direction that 1s

perpendicular to both the angular velocity vector and the relative (linear)

velocity vector.

55| Page



Referring to the figure above this would mean that the (fictitious)
Coriolis force acts perpendicular to the blue curve (where F. = 0}, since
the angular velocity vector of the merry-go-round 1s pointing out of the
page, and the relative (linear) velocity vector of the ball relative to the

merry-go-round 1s tangent to the blue curve.

The Coriolis force acting on the ball 1s indicated by the black arrows.

shown below.

The Coriolis force explains why the ball tends to curve 1n on 1tself,
relative to an observer sitting on the merry-go-round (and moving with
it).

The black arrow shown in the previous figure (with starting position '1")
represents the path traveled by the ball relative to ground (an inertial
reference frame), for the situation where no external forces are acting
on the ball in the plane of the merry-go-round (1.e. there 1s no friction
with the merry-go-round surface). In this situation, the ball would travel
a straight line (relative to ground) indicated by the black arrow (due to
Newton’s First Law). However, relative to the merry-go-round, the ball

would follow a curved path, similar to the blue curve.
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Motion in a Central Force Field:-

We now studv the properties of a particle of (constant) mass m moving in a particular type of force
field, a cenfral force field. Central forces are very important in physics and engineering. For example, the
gravitional force of attraction between two point masses is a central force. The Coulomb force of attraction
and repulsion between charged particles is a central force. Becanse of their importance they deserve special
consideration. We begin by giving a precise definition of central force, or central force field.

Central Forces: The Definition. Suppose that a foree acting on a particle of mass m has the properties
that:

e the force is always directed from m toward, or away, from a fixed point (2,

e the magnitude of the force only depends on the distance r from .

Forces having these properties are called central forces. The particle is saild to move in a central foree
field. The point (J is referred to as the cenfer of force.
Mathematically, F is a central force if and only if:

F = f(r)r: = f(r)= (1)

where r; = E i= a unit vector in the direction of r.
If f{r) < 0 the force is said to be aftractive towards (). If f(r) = 0 the force is said to be repulsive from
(). We give a geometrical illustration in Fig. 1.

A28
y
f§

m

r

0]

Figure 1: Geometrical illustration of a central force.

Properties of a Particle Moving under the Influence of a Central Force. If a particle moves in a
central force field then the following properties hold:

1. The path of the particle must be a plane curve, i.e., it must lie in a plane.

2. The angular momentum of the particle is conserved, i.e., it is constant in time.

3. The particle moves in such a way that the position vector (from the point (}) sweeps out equal areas
in equal times. In other words, the time rate of change in area is constant. This is referred to as the
Law of Areas. We will describe this in more detail, and prove it, shortly.
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Equations of Motion for a Particle in a Central Force Field. Now we will derive the basic equations
of motion for a particle moving in a central force field.

From Property 1 above, the motion of the particle must occur in a plane, which we take as the xy plane,
and the center of force is taken as the origin. In Fig. 2 we show the zy plane, as well as the polar coordinate
system in the plane.

Figure 2: Polar coordinate system associated with a particle moving in the xy plane.
Since the vectorial nature of the central force is expressed in terms of a radial vector from the origin it is

most natural (though not required!) to write the equations of motion in polar coordinates. In earlier lectures
we derived the expression for the acceleration of a particle in polar coordinates:

a = (F—ri®)r +(rf +27/)8,. (2)
Then, using Newton's second law, and the mathematical form for the central force given in (1), we have:

m(# — r0?)ry + m(rff + 278)0; = f(r)r. 3)
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Gauss’ Law For Gravitation

* We can define the gravitational field flux through a surface as:

D, =Ig-na’a
S

where n is a unit vector perpendicular to the surface at each point

» For the case of a closed surface around a point mass m, we
have:

D :Jg-nda :I(_sz]er -nda
S

S r

cosd
s—da
v

:—ij
8

 If we take the special case where the surface 1s a sphere,
the integral 1s easy:

D = —ijrlzda = %Ida
S S

=—-4rxGm
 Physically, we can interpret the flux as the “number” of
gravitational field lines passing through the surface

— But since the lines start at a point, and extend an infinite
distance away, the flux can’t depend on the shape of the
surface that encloses our point
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» Thus we have the general result, for any closed surface
around a point mass,

doesn’t matter where
the mass is

/ Note that it also
O, =-47Gm

 This can be easily extended to the case where there are N
point masses inside the surface. Since the field is linear,

N
®, =-4nGY m,
=1
« For a continuous distribution of matter, 1t’s:

O = —4;rGIp(r)dv
v

« For problems involving symmetric distributions of matter,
Gauss’ Law 1s a useful shortcut to finding the field

Example: Field Due to a Sphere

« Assume we have a spherically symmetric mass distribution
(with the density varying as a function of the distance from
the sphere’s center)

« We want to find the field at any point external to the
sphere

— The symmetry of the problem makes is a good candidate for
Gauss’ Law

— We should choose a surface that reflects this symmetry:
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[g-nda =-4zGM
S

From symmetry, we know that:
g=g/ rje andn=e,

» Therefore, the integral becomes much simpler:
jg -nda = Ig(r)da =4zr'g(r)
h h
4rr’g(r)=-47GM
-GM
g(r)=—73

» From this, we see that the field due to a sphere is exactly
the same as if all the mass were concentrated at the center
of the sphere

— This 1s not true for other shapes

e This result was very important for Newton, since it
justified his treatment of the Earth as a point mass when
calculating the motion of the moon
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Poisson’s Equation

* We can look at Gauss’ Law another way to find another
important property of the gravitational potential:

jg -nda = IV -gdv — This 1s just the
s v divergence theorem

=[(V-V®)dv=[V’®dv
V V

=—47G| p(x')dv
IV

 For the last relation to hold for an arbitrary volume V, the
integrands must be the same everywhere:

V20 = —47GM p(r')

Laplace’s Equation

« In the special case where there is no material in a region of
space, the potential in that region satisfies Laplace’s
Equation:

Vo =0

* Intuitively, this is nothing more than the statement that
field lines can’t start (or end) in a region where there 1s no
mass

« Mathematically, this gives us a way to determine the
potential in any mass-free region
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— As long as the bounday conditions (the value of the potential
at the edges of the region) are specified

 In practice, this equation 1s more useful in calculating
electric potentials than for gravitational potentials. . .

Kinetic energy of the system of particles

e Letthere are n number of particles in a n particle system and these particles possess
some motion. The motion of the i'th particle of this system would depend on the external
force F; acting on it. Let at any time if the velocity of i'th particle be v; then its kinetic
energy would be

1 )
Ep = 5 WV

r

1
Eg = :m("i-"’ij (1)
e Let r; be the position vector of the i'th particle w.r.t. O and r'; be the position vector of the
centre of mass w.r.t. r; ,as shown below in the figure , then
ri=r'+Rem (2)
where R, is the position vector of centre of mass of the system w.r.t. O.

Y

Figure 4.r'Is the position vector of center of mass w.rt. r,
« Differentiating equation 2 we get
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dr _dr; dR

il

_|_
dt dt dt
or,
v, =V L"F:w. (3)

where vi; is the velocity of i'th particle w.r.t. centre of mass and V., is the velocity
of centre of mass of system of particle. Putting equation 3 in 1 we get,

Eg =%ml[(v.l VO] = %ml[(vf 200V, V)

e

Eq,

1

1 2 U 1 72
=S my, +myv .V +— mlm (4)

e 4-

« Sum of Kinetic energy of all the particles can be obtained from equation 4

th Etmv +mL Y +;mtVrf;}

=1

EK—szv +zmv' V.. +Z Vo

1=1

1
_EVJZIH +Z mv’ +V zm v’
]
E V I"l.fI V " 5
=3 +2 m, v + thiri (5)

e Now last term in above equation which is
al
> me; =
=1

would vanish as it defines the null vector because

L4 ]

> myr’;=> " m;(r-R,)=MR_,-MR_ =0
= i=1
e Therefore kinetic energy of the system of particles is,

E, lhﬂf L+ Ymv =E__+E, 6)

Eom

h.-'l

4- |.-1

where,
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is the kinetic energy obtained as if all the mass were concentrated at the centre
of mass and

SR G
Ey=> Smy;

fml -
is the kinetic energy of the system of particle w.r.t. the centre of mass.
Hence it is clear from equation 6 that kinetic energy of the system of particles
consists of two parts: the kinetic energy obtained as if all the mass were
concentrated at the centre of mass plus the kinetic energy of motion about the
centre of mass.
If there were no external force acting on the particle system then the velocity of
the centre of mass of the system will remain constant and Kinetic Energy of the
system would also remain constant.

Two particle system and reduced mass

Two body problems with central forces can always be reduced to the form of one body
problems.

Consider a system made up of two particles. For an observer in any inertial frame of
refrence relative motion of these two particles can be represented by the motion of a
fictitious particle.

The mass of this fictetious particle is known as the reduced mass of two particle system.
Consider a system of two particles of mass m; and m, respectively. Let O be the origin
of any inertial frame of refrance and r; and r, be the position vectors of these particles at
any time t w.r.t. origin O as shown bellow in the figure.
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Figure 5. Two particle system

If no external force is acting on the system then the force acting on the system would be
equal to mutual interaction between two particles. Let the force acting on m; due to

m, be F,; and force acting on m, due to m; be F;, then equation of motion for particles
m; and m, would be
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F, =m,—! (1)
21 1 352
and
d’r,
F,=m,—= (2)
= ©dt”
from 1 and 2
d‘l‘l _ F]]. (3}
dt* m,
and
d":: _ B, 4)
dt* m,
From the figure
S0.
dr'}::df:z_dfl 6)
dt - dt” dt -
putting 3 and 4 in 6 we get
d-ry, _Fy, Fy D
d.l:l

m, m,

but from Newton's first law of motion we have
Fo1 = -Fi2
then from equation 7 we have
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dr, F, F 1 1
12 12 12 _
=t =y —+—
dt m, m, m, m,
d-r, _p W tm,
dt” | mm,
mm, |d’r,
Fp, = — 5
m, +m, | dt’
d*r,
or, Fj, =y —2 (®
dt”
m,m,
where, yt =| ——2—
m, +m,

is known as reduced mass of the system.

This equation 8 represents a one body problem , because it is similar to the equation of
motion of single particle of mass y at a vector distance r;, from one of thr two particles,
considered as the fixed centre of force.

Thus original problem involving two particle system has now been reduced to that of one
particle system which is easier to solve then original two body problem.
Casel.my<<m,

If the mass of any one patrticle in two particle system is very very less in comparison to
other particle like in earth-satellite system then reduced mass of the system would be

_ | mm, m,
m, +1m, 1+(m,/m,)
m, . . .
or,i =|1—— 1y, (using binomial theorem)
2
or, 4 =~ m,

So the reduced mass of the two particle system would be equal to the particle having
lesser mass.

Case2.mi=m,=m

If the masses 08 the patrticles of a two particle system are same then

;
mm, | m- m
m, +m, 2m 2
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Hence reduced mass of the system would be equal to the one half of the mass of a
single particle.

(9) Linear momentum and principle of conservation of linear
momentum

Product of mass and velocity of any patrticle is defined as the linear momentum of the
particle. It is a vector quantity and its direction is same as the direction of velocity of the
particle.

Linear momentum is represented by p. If m is the mass of the particle moving with
velocity v then linear momentum of the particle would be

p=mv
like v, p also depends on the frame of refrance of the observer.

If in a many particle systemm;, m,, Mz, ............. , m, are the masses

andVi, Vo, Vg, oooiiiiinnn. , V, are the velocities of the respective particles then total
linear momentum of the system would be

P=P, TP, TPy T TPy (2)

P=myvV, +M,V, + MV, +onn MLV

I-] = ‘!;Lﬂr{lll

where M is the total mass of the system and V., is the velocity of centre of mass of the
system

Hence from equation 2 we came to know that total linear momentum of a many particle
system is equal to the product of the total mass of the system and velocity of centre of
mass of the system.

Differentiating equation 2 w.r.t. t we get

dV,
g =N = I\,’[gcm (3)
dt dt
but , Ma.=Fex Which is the external force acting on the system. Therefore,
d

like this the rate of change of momentum of a many particle system comes out to be
equal to the resultant external force acting on the particle.
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If external force acting on the system is zero then,
d

_P =

dt

or, p=constant
or.p,+ P, + Py +..ee. + p, =const.
MV_ =p=const —

— &
or,V,, =const —

Hence we conclude that when resultant external force acting on any particle is zero then
total linear momentum of the system remains constant. This is known as law of
conservation of linear momentum.

Above equation 5 is equivalent to following scalar quantities

Pt Py TPz e +p,, =const. -
Py TPy TPy T +p,, = const. L (6)
PutP, +DPst e +p_,, =const. —

Equation 6 shows the total linear momentum of the system in terms of x , y and z co-
ordinates and also shows that they remain constant or conserved in absence of any
externally applied force.

The law of conservation of linear momentum is the fundamental and exact law of nature.
No violation of it has ever been found. This law has been established on the basis of
Newton's law but this law holds true in the situations where Newtonian mechanics fails.

Centre of mass frame of refrance

If we attach an inertial frame of refrance with the centre of mass of many particle system
then centre of mass in that frame of refrance would be at rest or, V.,,=0 , and such type
of refrance frames are known as centre of mass frame of refrance.

Total linear momentum of a many particle system is zero in centre of mass frame of
refrance i.e., pcn=MV:n=0 since V.,=0.

Therefore C-refrance frames are also known as zero momentum refrance frames.
Since in absence of any external force the centre of mass of any system moves with
constant velocity in inertial frame of refrance therefore for a many particle system C-
rame of refrance is an inertial frame of refrence.

Refrance frames connected to laboratory are known as L-frame of refrance or lebiratory
frame of refrance.

Collisions
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Collision between two particles is defined as mutual interaction between particles for a
short interval of time as a result of which energy and momentum of particle changes.
Collision between two billiard balls or between two automobiles on road are few
examples of collisions from our everyday life. Even gas atoms and molecules at room
temperature keep on colliding against each other.

For the collision to take place , physical contact is not necessary. In cas of Rutherford
alpha scattering experiment , the alpha particles are scattered due to electrostatic
interaction between the alpha particles and the nucleus from a distance i.e., no physical
contact occurs between the alpha particles and the nucleus.

Thus , in physics collision is said to have occured , if two particles physically collide with
each other or even when the path of motion of one particle is affected by other.

In the collision of two particles law of conservation of momentum always holds true but in
some collisions Kinetic energy is not always conserved.

Hence collisions are of two types on the basis of conservation of energy.

() Perfectly elastic collision

Those collisions in which both momentum and kinetic energy of system are conserved
are called elastic collisions for example elastic collision occurs between the molecules of
a gas. This type of collision mostly takes place between the atoms, electrons and
protons.

Characterstics of elastic collision

(a) Total momentum is conserved.

(b) Total energy is conserved.

(c) Total kinetic energy is conserved.

(d) Total mechanical energy is not converted into any other form of energy.

(e) Forces involved during interaction are conservative in nature.

Consider two particles whose masses are m; and m; respectively and they collide each
other with velocity u; and u, and after collision their velocities

become v, and v, respectively.

If collision between these two particles is elastic one then from law of conservation of
momentum we have

miU; + MaUs = MV + MyVs

and from the law of conservation of energy we have

1, 1, 1 , 1 .,
Emlul'kimzuz_iml‘l'kimﬂz

(ii) Perfectly inelastic collision

Those collisions in which momentum of system is conserved but kinetic energy of the
system is not conserved are known as inelastic collision.

Here in inelastic collision two bodies stick to each other after collision as a bullet hit its
target and remain embedded in the target.

In this case some of the kinetic energy is converted into heat or is used up in in doing
work in deforming bodies for example when two cars collide their metal parts are bet out
of shape.

Characterstics of inelastic collision

(a) Total momentum is conserved.

(b) Total energy is conserved.
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(c) Total kinetic energy is not conserved.

(d) A part or whole of whole mechanical energy may be converted into other forms of
energy.

(e) Some or all forces involved during interaction are non-conservative in nature.
Consider two particles whose masses are m; and m, respectively and they collide each
other with velocity u; and u, respectively.

If the collision between these two particles is inelastic then these two particles would
stick to each other and after collision they move with velocity v then from law of
conservation of momentum we have

myuy +myuy =(my +m, v
m i, + My,
| — = =
(my+m,)
Kinetic energy of particles before collisions is

;1
K.E.,=—mmuj+—m,u
2 2

F Fe

[

and kinetic energy of particles after collisions is
1 2
K.E., :E(ml +m, WV

by law of conserevation of energy
1 1 1 \
;ml“f +;m1u§ :;[ml + 1, ,}"2 +0

e e e

where Q is the loss in kinetic energy of particles during collision.

Head on elastic collision of two particles in L-frame of refrance

Consider two particles whose masses are m; and m; respectively and they collide each
other with velocity u; and u, and after collision their velocities
become v, and v, respectively.
Collision between these two particles is head on elastic collision. From law of
conservation of momentum we have
MyU; + MaUz = MyVy + MyV2 1)
and from law of conservation of kinetic energy for elastic collision we have

r1 o, 1 ., 1 , 1 .,
5 il +;m1“2 =5V, +;mz‘z
- - - - 2
rearranging equation 1 and 2 we get
M1(U1-V1)= Ma(V2-Uy) 3)
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and
my (uy —vy) =m, (v; -u;) 4)

dividing equation 4 by 3 we get

U, +vi=Uu; +Vvy

Uz - Uy = -(V2 - V1) (5)

where (u; - u;) is the relative velocity of second particle w.r.t. first particle before collision
and (V.- v;) is the relative velocity of second particle w.r.t. first after collision.

From equation 5 we come to know taht in a perfectly elastic collision the magnitude of
relative velocity remain unchanged but its direction is reversed. With the help of above
equations we can find the values of v, and v, , so from equation 5

Vi=Vz-Up + U (6)

Vo = Vi + Up - Uy (7)

Now putting the value of v; from equation 6 in equation 3 we get

M1(Uy - Vo + Uy - Uz) = My(V2 - Uy)

On solving the above equation we get value of v, as

[ 2m, 3 [ml —ml\‘l
V,=| ———u, +| ——— [u, (8)

m1+m1) m1+m1j

Similarly putting the value of v, from equation 7 in equation 3 we get

v - [ELL +[ML ©

ml+m:)J m1+m1)1

Total kinetic energy of particles before collision is

1 1
KFE. =;mluf +;m1u§

e

and total K.E. of particles after collision is

[T S
KE . =MV SV,

Ratio of initial and final K.E. is

]- 2 2
KE, 7MW F3mau

= =1
KE,

1
Eml 1'f + Emj‘r‘;'
Special cases

Case I: When the mass of both the particles are equal i.e., m; = m, then from equation 8
and 9, v,=u; and v;=u,. Thus if two bodies of equal masses suffer head on elastic
collision then the particles will exchange their velocities. Exchange of momentum
between two particles suffering head on elastic collision is maximum when mass of both
the particles is same.

Case I1: when the target particle is at rest i,e u,=0
From equation (8) and (9)
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—_
(=]

ElE
+

1 1 2 \
—m,vi 7
72 *_2 |‘5m1+m:)}
1 1
m .
4 i
_ 4mm , _ m, —(12)
m, +m-,}° m, . 4
( 1 _.) (1+_ﬂ}ﬂ
m,

when m;=mj;,then in this condition vo=0 and v,=u; and part of the KE transferred would
be
=1

Therefore after collisom first particle moving with initial velocity u; would come to rest
and the second particle which was at rest would start moving with the velocity of first
particle.Hence in this case when m;=m, transfer of energy is 100%.if m; > m; or

m; < m; ,then energy transformation is not 100%

Case Il
if m, >>>>m; and u,=0 then from equation (10) and (11)
Vi = -u; and v,=0 (13)

For example when a ball thrown upwards collide with earth

Case IV:
if m; >>>> m, and u,=0 then from equation (10) and (11)
Vi = u; and v,=2u; (14)

Therefore when a heavy particle collide with a very light particle at rest ,then the heavy
particle keeps on moving with the same velocity and the light particle come in motion
with a velocity double that of heavy particle
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Head on collison of two particles in C frame of refrence

Consider two particles of mass m; and m, having position vectors r; and r, respectively
And position vector of the CEnter of mass of the system would be R,

then

R = et Sl (15)

[mii ]
W+,

Velocity of the center of mass would be

@, ,
m, —+m, —

¥ :dRcm _ bdt o dt _mu, tm,u, (16)
o dr m; +m, m; +m,

Intial velocity of the m; w.r.t center of mass frame of refrence is

. Irmluj+m1u3ﬁ'|

U, =H; — v, =i; — —_—
| m;+m, /|

= (17

m; +1m, m; +m,

Similarly Intial velocity of m, w.r.t center of mass frame of refrence is

f \
_I m i, +m,u, Mk, — i

. i
Uy =H.—V. =H | = —(18
2 2 o 2 | ﬂil1+ﬂ:l: )} ﬂ:l1+ﬂ:l: ( }

4

Total linear momentum before collison in absence of external force in C frame of
refrence would be

=myu; +myU,

=0

S0 up =(My/my)u;’

If vi and v, are the velocites of mass m; and m, respectively after collision then by law
of conservation of linear momentum

m;I|_V1' +m2V2I:IO

'/ :(m]_/mz)vl
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Since the collision is elastic,Kinetic energy will be conserved
1 , 1 1 ., 1 .

— iy —m1u1:=—mv‘ — LV,
5 Tt 5 b 5 5 ks

- a - a

Putting the values of &, and v, -we get
2 [ vy
=myvy eyl
Lo,

(!
S

-
i

By L+l

I:mlulT
Ly )

I

hence vo=

From which |v1 [=|us | and |v2 |=|us |

hence after collison velocities of particles remain unchanged in center of mass frame of
refrence.If the collision is one dimmension then because of the collsion direction of these
would be opposite to that of their intial velocites

) ~(19)

N ' oy — Mo,
Vv, = —1 =—(—
1 1
iyt W

i, — iy

vy, =—u, =— ——) —(20)
1 1
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UNIT-3

Elastic Moduli

In the stress-strain curve given below, the region within the elastic limit
(region OA) is of importance to structural and manufacturing sectors
since it describes the maximum stress a particular material can take
before being permanently deformed. The modulus of elasticity is simply
the ratio between stress and strain. Elastic Moduli can be of three
types, Young’s modulus, Shear modulus, and Bulk modulus. In this

article, we will understand elastic moduli in detail.
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Elastic Moduli - Young's Modulus
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Elastic limit E
or yield poin '
’ Fracture
8, .. % oint
Y C . . F
N BJ'J Plastic behaviour
T d
1
1
% '\\I'l\‘ Elastic behaviour :
2 i Fig. 1
L] I
[
r
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L .
ot . 30%
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Many experiments show that for a given material, the magnitude of strain produces is
the same regardless of the stress being tensile or compressive. Young’s modulus (Y) is

the ratio of the tensile/compressive stress (o) to the longitudinal strain (g).

We already know that, the magnitude of stress = g and longitudinal strain = %

Substituting these values, we get

Y =

r-|£‘_:|'.x|'r:

v (FxIL)
Y= (AxAL) ...(2)

Now, Strain is a dimensionless quantity. Hence, the unit of Young’s
modulus is N/m2 or Pascal (Pa), the same as that of stress. Let’s look at

Young’s moduli and yield strengths of some materials now:
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Young's Modulus Elastic Limit Tensile Strength
Materials
¥ (10° N/m2) (107 N/m2) (107 N/m2)

Aluminum 70 18 20
Copper 120 20 40
Wrought Iron 190 17 33

Steel 200 30 50

Bone

Tensile 16 - 12
Compressive 9 - 12

From the table, you can observe that Young’s moduli for metals are large. This means

that metals require a large force to produce a small change in length. Hence, the force
required to increase the length of a thin wire of steel is much larger than that required
for aluminum or copper. Therefore, steel is more elastic than the other metals in the

table.

Determination of Young's Modulus of the Material of a Wire

The figure below shows an experiment to determine Young’s modulus of a material of

wire under tension.
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As can be seen in the diagram above, the setup consists of two long and straight wires
having the same length and equal radius. These wires are suspended side-by-side from
a fixed rigid support. The reference wire (wire A) has a millimeter main scale (M) and

a pan to place weight.

The experimental wire (wire B) also has a pan in which we can place weights. Further,
a vernier scale is attached to a pointer at the bottom of wire B and the scale M is fixed
to reference wire A. Now, we place a small weight in both the pans to keep the wires

straight and note the vernier scale reading.

Next, the wire B is slowly loaded with more weights, bringing it under tensile stress
and the vernier reading is noted. The difference between the two readings gives the
elongation produced in the wire. The reference wire A is used to compensate for any

change in length due to a change in the temperature of the room.
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Let r and L be the initial and final length of the wire B, respectively. Therefore, the area
of the cross-section of the wire B is = ir>. Now, let M be the mass that produces an
elongation of AL in wire B. Therefore, the applied force is = Mg, where ‘g’ is the
acceleration due to gravity. Hence, using equations (1) and (2), Young’s modulus of the

material of wire B is:
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Elastic Moduli - Shear Modulus

Shear Modulus (G) is the ratio of shearing stress to the corresponding shearing strain.

Another name for shear stress is the Modulus of Rigidity.

shearingstress(o,)

e G:

shearingstrain

:;'G:

t-|E":n.I'!:

_ FxL
- @

We also know that, Shearing strain = 6

- Aiﬁ' - (5)

Further, the shearing stress a can also be expressed as

0,=Gx0...(6)

Also, the SI unit of shear modulus is N/m? or Pa. The shear moduli of a few common

materials are given in the table below.
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Shear Modulus (G)
Materia . X
107 N/m=
Alurminum 23
Brass 36
Copper 42
Glass 23
Iron 70
Lead 5.5
Mickel 77
Stesl a4
Tungsten 150
Wood 10

From the table, you can observe that the shear modulus is less than Yo

for the same materials. Usually, G = %
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Elastic Moduli - Bulk Modulus

We have already studied that when we submerge a body in a fluid, it undergoes a
hydraulic stress which decreases the volume of the body, leading to a volume strain.

Bulk modulus (B) is the ratio of hydraulic stress to the corresponding hydraulic strain.

The negative sign means that as the pressure increases, the volume decreases. Hence,
for any system in equilibrium, B is always positive. The SI unit of the bulk modulus is

N/m? or Pa. The bulk moduli of a few common materials are given in the table below.
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Bulk Modulus (B)
Wateria . )
107 Mfm=
Aluminum 72
Brass 61
Copper 140
Glass 37
Iron 100
Mickel 260
Steel 160
Liguids
Water 2.2
Ethano 0.9
Carbon disulfide 1.56
Glycerine 4.76




Mercury 25

Ajr (at STP) 1.0x10%

Compressibility (k) is the reciprocal of the bulk modulus. It is the fractional change in

volume per unit increase in pressure.

1l 1 1 AV
..k—E——a—px v ...(8)

From the table, you can observe that the bulk modulus for solids is much larger than
that for liquids and gases. Hence, solids are the least compressible while gases are the

most compressible. This is because, in solids, there is a tight coupling between the

neighboring atoms.

Torsional oscillations

—

1 /
| Y
e

In the Cavendish experiment to measure gravity, we had a quartz fiber dangling from
a ceiling. Attached to it was some rod with masses on it. The fiber exerts some torque
when the rod is displaced from its equilibrium position.

If small angles, you can say the the torque exerted is proportional to the displacement
from equilibrium
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T = — KH

F = —kr
This is just like . & IS a constant having to do with the properties of
the materials.
So applying fa = 7
ﬁ’;f fr— —H’H
=
or
d=f K
= __#
dt= I
k/m w1
Again this is just like , so we have except of we have here

2

wo o=

K
I

So the quartz fiber will oscillate back and forth at this angular frequency.
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Surface Tension

The cohesive forces between liquid molecules are responsible for the phenomenon known as
surface tension. The molecules at the surface do not have other like molecules on all sides of
them and consequently they cohere more strongly to those directly associated with them on
the surface. This forms a surface "film" which makes it more difficult to move an object
through the surface than to move it when 1t 1s completely submersed.

Surface tension 1s typically measured 1n dynes/cm, the force in dvnes required to break a film
of length 1 cm. Equivalently, it can be stated as surface energy in ergs per square centimeter.
Water at 20°C has a surface tension of 72.8 dynes/cm compared to 22.3 for ethyl alcohol and
465 for mercury.

Other
surface
tension
examples.

(A

Surface tension Surface tension  Surface tension Alveoli
and capillarity and bubbles and droplets of lungs

Angle of Contact
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Introduction:

= When water is taken in a glass vessel, the free surface of the water near the walls is curved concave
upward. If mercury is taken in a glass vessel, the free surface of mercury near the walls is convex upwards.
= When the liguid is in contact with solid, the angle between the solid surface and the tangent to the free

surface of liquid at the point of contact, measured from inside the liquid is called the angle of contact.

Glass - L Glass

Water

= When the liquid surface is curved concave upwards, the angle of contact is acute and when the liquid

surface is curved convex upwards, the angle of contact is obtuse.

Characteristics of the Angle of Contact:

= The angle of contact is constant for a given liquid-solid pair.

= When the angle of contact between the liquid and a solid surface is small (acute), the liquid is said to wet
the surface. Thus water wets glass.

= |fthe angle of contact is large the surface is not wetted. Mercury does not wet glass.

= [fthere are impurities in liguid, then they alter the values of angle of contact.

= The angle of contact decreases with increase in temperature.

= Foraliquid which completely wets the solid, the angle of contact is equal to zero.

Viscosity
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Have you ever noticed that some liquids like water flow very
rapidly while some others like castor oil do not flow fast? Why
is it so? Didn’t that question occur to you yet? Well, if it did, we
have the answer to it! This is the concept of Viscosity. In this
chapter, we will study all about the topic and look at the laws

and examples of the same. VISCOSity

It is the internal resistance to flow possessed by a liquid. The liquids
which flow slowly, have high internal resistance. This is because of the
strong intermolecular forces. Therefore, these liquids are more viscous
and have high viscosity.

The liquids which flow rapidly have a low internal resistance. This is
because of the weak intermolecular forces. Hence, they are less viscous
or have low viscosity.

Laminar Flow

Consider a liquid flowing through a narrow tube. All parts of the liquids
do not move through the tube with the same velocity. Imagine the liquid
to be made up of a large number of thin cylindrical coaxial layers. The
layers which are in contact with the walls of the tube are almost
stationary. As we move from the wall towards the centre of the tube, the
velocity of the cylindrical layers keeps on increasing till it is maximum
at the centre.
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This is a laminar flow. It is a type of flow with a regular gradation of
velocity in going from one layer to the next. As we move from the
centre towards the walls, the velocity of the layers keeps on decreasing.
In other words, every layer offers some resistance or friction to the layer
immediately below it.

Viscosity is the force of friction which one part of the liquid offers to
another part of the liquid. The force of friction f between two layers
each having area A sg cm, separated by a distance dx cm, and having a
velocity difference of dv cm/sec, is given by:

foc A(dv/dx)
f=nA (dv/dx)

where 1 is a constant known as the coefficient of viscosity and dv/dx is
called velocity gradient. If dx =1, A=1sq cm, dv =1 cm/sec, then f

= 1. Hence the coefficient of viscosity may be defined as the force of
friction required to maintain a velocity difference of 1 cm/sec between
two parallel layers, 1 cm apart and each having an area of 1 sq cm.

Units of Viscosity

We know that: n=1f.dx / A .dv. Hence, 1 = dynes X cm / cm?xcm/sec.
Therefore we may write: 1 = dynes cm? sec or the units of viscosity are
dynes sec cm? This quantity is called 1 Poise.

f=mxa
n=mxaxdx)/(A.dv)
Hence,n=gcm*s*
Therefore, n =1 poise
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In S.I. units, n=f.dx / A .dv
= Nxm/(m?xms?)
Therefore we may write, 1 =N m? or Pas

1 Poise=1gcm?s*=0.1kgm*s?

Solved Examples For You

Q: The space between two large horizontal metal plates 6 cm apart, is
filled with a liquid of viscosity 0.8N/m. A thin plate of surface

area 0.01m? is moved parallel to the length of the plate such that the
plate is at a distance of 2m from one of the plates and 4cm from the
other. If the plate moves with a constant speed of 1ms™, then:

A. Fluid layer with the maximum velocity lies midway between the
plates.

B. The layer of the fluid, which is in contact with the moving plate, has
the maximum velocity.

C. That layer which is in contact with the moving plate and is on the
side of the farther plate is moving with maximum velocity.

D. Fluid in contact with the moving plate and which is on the side of the

nearer plate is moving with maximum velocity.

Solution: B) The two horizontal plates are at rest. Also, the plate in
between the two plates, is moving ahead with a constant speed of 1ms™,
The layer closest to this plate will thus move with the maximum
velocity.
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Steady flow

Steady flow is the flow in low speed such that its adjacent layers slide smoothly
with respect to each other , Streamline is an imaginary line shows the path of any
part of the fluid during its steady flow inside the tube , The densityof the
streamlines at a point is the number of streamlines crossing perpendicular a unit
area point .

Characteristics of the streamlines

Imaginary lines do not intersect .

2. The tangent at any point along the streamline determines the direction of the
instantaneous velocity of each particle of the liquid at that point .

3. The number of streamlines does not change as the cross-section area changes
, While the streamlines density at a point changes as the cross-section area
changes and expresses the flow velocity of the liquid at that point .

4. Therefore , streamlines cram up at points of high velocity ( its density

increases ) and keep apart at points of low velocity ( its density decreases ) ,

This means that speed of fluid at any point inside the tube is directly

proportional to the density of streamlines at that point .

Conditions of the steady flow

Liquid should fill the tube completely .

2. Speed of the liquid at a certain point in the tube is constant and does not

change as the time passes .

3. Flow is irrotational , there is no vertex motion .

4. No frictional forces between the layers of the nonviscous liquid .

5. Flow such that the amount of liquid entering the tube equals that emerging

out of it in the same period of time because the liquid is incompressible .

Flow rate is the quantity of liquid flowing through a certain cross-sectional area
of a tube in one second , Flow rate could be volume flow rate and mass flow rate .
Volume flow rate ( Q.) is the volume of fluid flowing through a certain area in
one second , measuring unit is m3¥/s , When volume rate of a liquid = 0.05 m3/s , It
means that volume of fluid flowing through a certain area in one second = 0.05
m3.

Mass flow rate ( Q. ) is the mass of fluid flowing through a certain area in one
second , measuring unit is kg/s , when mass flow rate of a liquid = 3 kg/s , It
means that mass of fluid flowing through a certain area in one second = 3 kg .

Calculating the flow rate at any cross-sectional area :

Considering a quantity of liquid of density ( p ) , volume ( V,) and mass ( m)
flowing in speed ( v ) to move a distance ( Ax ) in time ( At ) through cross-
sectional area of the tube (A).

=

=
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From the definition of the volume flow rate :

Q.= AV. /At

AV,=AAx=AV At ,whereAx =V At

~Q.=(AVALt)/At

Q.=Av

From the definition of the mas flow rate :

Q.=Am /At

Am = p AV,

AV, = A Ax = AV At

Q.=(pAVAt)/At

Qu=pAv=pQ,

The amount of liquid entering the tube = that emerging out of it in the same

period of time .

Flow rate ( volume or mass ) is constant at any cross-sectional area and this is

called law of conservation of mass that leads to the continuity equation .
Deduction of the continuity equation ( relation between flow speed of
liquid and cross-sectional area of the tube )

Imagine that a tube has a fluid in a steady flow where the previous conditions of

steady flow are verified .

Consider two-cross sectional areas (A, , A, ) perpendicular to the streamlines :

At first cross-sectional area ( A. ) , the speed of liquid through it (v.) then :

The volume flow rate : Q,=A.v. , The mass flow rate : Q. =p A. v,

At second cross-sectional area ( A.) , the speed of liquid through it (v, ) then :

The volume flow rate : Q, = A, v, , the mass flow rate : Q.=p A, v,

The flow rate ( volume or mass ) is constant in case of steady flow .

pAV.=p AV,

AVv.=AV,

v./v,=A, [ A, this relation is called the continuity equation

= Continuity Equation

4 A
A

P24, v, = pr Ay,

Same, incompressable, fluid so roe drops
out!
4’4] Vl R A‘) V‘)
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Continuity equation
The continuity equation
The velocity of a fluid in a steady flow at any point is inversely proportional to
cross-sectional area of the tube at that point .
Based on the previous relation (A, v.= A, v, ) if :
The tube is cylindrical having two cross-sectional area one is wide and the other
narrow .
AV.=AV,
A v,=r%v,
The tube is branched into ( n ) branches of the same cross-sectional area .
A Vv.=nA,v,
rAv.=nr3v,
The tube is branched into number of branches of different cross-sectional area
AVv.=AVv.+ A v.+ A v,
AVi=r3LVv,+r3 v, +r3 v,
Where : A =z r2, r = radius of the tube .
The speed is inversely proportional to the cross-sectional area (v < 1/A ), so, the
liquid flows slowly in the tube when its cross-sectional area is big and vice versa..
Applications on the continuity equation
Flow of blood is faster in the main artery than in the blood capillaries because
the sum of cross-sectional areas of blood capillaries is greater than the cross-
sectional area of the main artery and since ( v « 1/A ) , so , speed
of blooddecreases in the blood capillaries to  allow  exchange
of oxygen and carbon dioxide gases in the tissues to supply it with food .
Design of the gas opening in the stoves , Opening are small so that the gas rushes
fast out of it in a high speed (v« 1/A) .
Turbulent flow
The turbulent flow is the flow when the speed of the fluid exceeds a certain limit
and is characterized by small eddy currents , The steady flow of a fluid ( liquid
or gas ) becomes turbulent flow if :
1. The speed of the fluid exceeded a certain limit and is characterized by small
eddy currents .
2. A gas transfers from small space to a wider space .
3. Agas becomes turbulent when it transfers from high pressure to
low pressure .
Applications on the pressure at a point ( Connected vessels , U-shaped tube &
Mercuric barometer )
Applications on pascal’s principle , Manometer types and uses

Factors affecting the force of viscosity and Applications on the viscosity
What is a Reynolds’s Number?
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Reynolds’s number is a dimensionless quantity that is used to determine the type of flow pattern as
laminar or turbulent while flowing through a pipe. Reynolds’s number is defined by the ratio of inertial
forces to that of viscous forces.

It is given by the following relation:

ReynoldsNumber=inertialForceViscousForce
Re = pVD/p

Where,

Re is the Reynolds’s number
p is the density of the fluid

V is the velocity of flow

D is the pipe diameter

M is the viscosity of the fluid

If the Reynolds’s number calculated is high (greater than 2000), then the flow through the pipe is
said to be turbulent. If Reynolds’s number is low (less than 2000), the flow is said to be laminar.
Numerically, these are acceptable values, although in general the laminar and turbulent flows are
classified according to a range. Laminar flow falls below Reynolds’s number of 1100 and turbulent
falls in a range greater than 2200.

Laminar flow is the type of flow in which the fluid travels smoothly in regular paths. Conversely,
turbulent flow isn’t smooth and follows an irregular maths with lots of mixing.

An illustration depicting laminar and turbulent flow is given below.

The Reynolds’s number is named after the British physicist Osborne Reynolds’s. He discovered this
while observing different fluid flow characteristics like flow a liquid through a pipe and motion of an
airplane wing through the air. He also observed that the type of flow can transition from laminar to
turbulent quite suddenly.

Try the following application based problem to understand this concept.

Problem 1- Calculate Reynolds’s number, if a fluid having viscosity of 0.4 Ns/m2 and relative
density of 900 Kg/m3 through a pipe of 20mm with a velocity of 2.5 2.5 m/
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Solution 1 = Given that,

Viscosity of fluid p

0.4Ns
me

=
Density of fluid p

p = 900K g/m?
Diameter of the fluid

L=20x%x10*m

pVL

R =70

_ DOD=2.5%20x10 *
- 0.4

= 112.5

From the above answer, we observe that the Reynolds number value is less than 2000. Therefore,
the flow of liquid is laminar.

For more concepts in Physics, check out our YouTube Channel with loads of video modules to help
you out only at BYJU'’S.

What is Bernoulli's equation?

This equation will give you the powers to analyze a fluid flowing up and down through all kinds of
different tubes.

What is Bernoulli's principle?

Bernoulli's principle is a seemingly counterintuitive statement about
how the speed of a fluid relates to the pressure of the fluid. Many
people feel like Bernoulli's principle shouldn't be correct, but this might
be due to a misunderstanding about what Bernoulli's principle actually
says. Bernoulli's principle states the following,

Bernoulli's principle: Within a horizontal flow of fluid, points of
higher fluid speed will have less pressure than points of slower
fluid speed.

[Why does it have to be horizontal?]
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So within a horizontal water pipe that changes diameter, regions where
the water is moving fast will be under less pressure than regions where
the water is moving slow. This sounds counterintuitive to many people
since people associate high speeds with high pressures. But, we'll show
in the next section that this is really just another way of saying that
water will speed up if there's more pressure behind it than in front of it.
In the section below we'll derive Bernoulli's principle, show more
precisely what it says, and hopefully make it seem a little less
mysterious.

How can you derive Bernoulli's principle?

Incompressible fluids have to speed up when they reach a narrow
constricted section in order to maintain a constant volume flow rate.
This is why a narrow nozzle on a hose causes water to speed up. But
something might be bothering you about this phenomenon. If the water
Is speeding up at a constriction, it's also gaining kinetic energy. Where
Is this extra kinetic energy coming from? The nozzle? The pipe?

The only way to give something kinetic energy is to do work on it. This
Is expressed by the work energy principle.

i .1 |

Westernal = AK = Emvfc — Emvf

So if a portion of fluid is speeding up, something external to that
portion of fluid must be doing work it. What force is causing work

to be done on the fluid? Well, in most real world systems there
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are lots of dissipative forces that could be doing negative work,
but we're going to assume for the sake of simplicity that these
viscous forces are negligible and we have a nice continuous and
perfectly laminar (streamline) flow. Laminar (streamline) flow
means that the fluid flows in parallel layers without crossing
paths. In laminar streamline flow there is no swirling or vortices
in the fluid. OK, so we'll assume we have no loss in energy due to
dissipative forces. In that case, what non-dissipative forces could be
doing work on our fluid that cause it to speed up? The pressure from
the surrounding fluid will be causing a force that can do work and
speed up a portion of fluid.

Consider the diagram below which shows water flowing along streamlines
from left to right. As the outlined volume of water enters the constricted
region it speeds up. The force from pressure P_1P1 on the left side of the
shaded water pushes to the right and does positive work since it pushes in the
same direction as the motion of the shaded fluid. The force from

pressure P_2P2 on the right side of the shaded fluid pushes to the left and
does negative work since it pushes in the opposite direction as the motion of
the shaded fluid.
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We know that the water must speed up (due to the continuity equation) and
therefore have a net positive amount of work done on it. So the work done by
the force from pressure on the left side must be larger than the amount of
negative work done by the force from pressure on the right side. This means
that the pressure on the wider/slower side P_1P1 has to be larger than the
pressure on the narrow/faster side P_2Po.

This inverse relationship between the pressure and speed at a point in a
fluid is called Bernoulli's principle.

Bernoulli's principle: At points along a horizontal streamline, higher
pressure regions have lower fluid speed and lower pressure regions
have higher fluid speed.

100 | Page



It might be conceptually simplest to think of Bernoulli's principle as the
fact that a fluid flowing from a high pressure region to a low pressure
region will accelerate due to the net force along the direction of motion.

The idea that regions where the fluid is moving fast will have lower
pressure can seem strange. Surely, a fast moving fluid that strikes you
must apply more pressure to your body than a slow moving fluid, right?
Yes, that is right. But we're talking about two different pressures now.
The pressure that Bernoulli's principle is referring to is the internal
fluid pressure that would be exerted in all directions during the flow,
including on the sides of the pipe. This is different from the pressure a
fluid will exert on you if you get in the way of it and stop its motion.

[1 still don't get the difference.]

Note that Bernoulli's principle does not say that a fast moving

fluid can't have significantly high pressures. It just says that the
pressure in a slower region of that same flowing system must have even
larger pressure than the faster moving region.

What is Bernoulli's equation?

Bernoulli's equation is essentially a more general and mathematical
form of Bernoulli's principle that also takes into account changes in
gravitational potential energy. We'll derive this equation in the next
section, but before we do, let's take a look at Bernoulli's equation and
get a feel for what it says and how one would go about using it.
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Bernoulli's equation relates the pressure, speed, and height of any two
points (1 and 2) in a steady streamline flowing fluid of density p.
Bernoulli's equation is usually written as follows,

1 1
P+ §p’uf + pghy = Py + §pv§ + pghs

The variables Py, vy, h; refer to the pressure, speed, and height of the fluid at
point 1, whereas the variables P, vo, and hs refer to the pressure, speed, and
height of the fluid at point 2 as seen in the diagram below. The diagram below
shows one particular choice of two points (1 and 2) in the fluid, but Bernoulli's
equation will hold for any two points in the fluid.
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When using Bernoulli's equation, how do you know where to choose your
points? Choosing one of the points at the location where you want to find an
unknown variable is a must. Otherwise how will you ever solve for that
variable? You will typically choose the second point at a location where you
have been given some information, or where the fluid is open to the
atmosphere, since the absolute pressure there is known to be atmospheric
pressure Py, = 1.01 x 10°Pa.

Note that the h refers to the height of the fluid above an arbitrary level that
you can choose in any way that is convenient. Typically it is often easiest to
just choose the lower of the two points (1 or 2) as the height where h = 0. The
P refers to the pressure at that point. You can choose to use gauge pressure or
absolute pressure, but whichever kind of pressure you choose (gauge or
absolute) must also be used on the other side of the equation. You can't insert
the gauge pressure at point 1, and the absolute pressure at point 2. Similarly, if
you insert the gauge pressure at point 1 and solve for the pressure at point 2,
the value you obtain will be the gauge pressure at point 2 (not the absolute
pressure).
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The terms Epvg and pgh in Bernoulli's equation look just like kinetic energy

§mv’? and potential energy mgh, only with the mass m replaced with density
p. So it may not come as much of a surprise that Bernoulli's equation is the
result of applying conservation of energy to a flowing fluid. We'll derive
Bernoulli's equation using conservation of energy in the next section.

How do you derive Bernoulli's equation?

Consider the following diagram where water flows from left to right in a pipe
that changes both area and height. As before, water will speed up and gain
kinetic energy K at constrictions in the pipe, since the volume flow rate must
be maintained for an incompressible fluid even if those constricted sections
move upward. But now since the constriction also causes the fluid to move
upward, the water will be gaining gravitational potential energy U, as well as
kinetic energy K. We will derive Bernoulli's equation by setting the energy
gained by the fluid equal to the external work done on the fluid.
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Let's assume the energy system we're considering is composed of the volumes
of water 1 and 2 as well as all the fluid in between those volumes. If we
assume the fluid flow is streamline, non-viscous, and there are no dissipative
forces affecting the flow of the fluid, then any extra energy A(K + U)system
added to the system will be caused by the external work (W terna ) done on

the fluid from pressure forces surrounding it. [Doesn't gravity do work too?]

We can express this mathematically as,

Te:rtern.af — A(K + U-).s-yste-m
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First we'll try to find the external work done W, t.rma ON the water. None of
the water between points 1 and 2 can do external work since that water is all
part of our energy system. The only pressures that can directly do external
work on our system are P; and P, as shown in the diagram. The water at P, to
the left of volume 1 will do positive work since the force points in the same
direction as the motion of the fluid. The water at P, to the right of volume 2
will do negative work on our system since it pushes in the opposite direction
as the motion of the fluid.

For simplicity's sake we'll consider the case where the force from water
pressure to the left of volume 1 pushes volume 1 through its entire width d;.
Assuming the fluid is incompressible, this must displace an equal volume of
water everywhere in the system, causing volume 2 to be displaced through its
length a distance ds.

Work can be found with W = Fd. We can plug in the formula for the force
from pressure F' = P A into the formula from work to get W = P Ad. So, the
positive work done on our system by the water near point 1 will be

Wi = Py Aid; and the work done by the water near point 2 will be

Wy = — Po Aodp. [How do you determine the signs here?]

Plugging these expressions for work into the left side of our work energy
formula Wit = A(K + U)system We get,

PiAidy — PyAgdy = A(K + U) ystem

But the terms A;d; and Asds have to be equal since they represent the
volumes of the fluid displaced near point 1 and point 2. If we assume the fluid
is incompressible, an equal volume of fluid must be displaced everywhere in
the fluid, including near the top. So, Vi = Ajd; = Asds = Vo. We can just write
the volume term simply as V" since the volumes are equal. This simplifies the
left side of the work energy formula to,

PV — BV = A(K +U)system
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That takes care of the left hand side. Now we have to address the right hand
side of this equation. This is a crucial and subtle part of the derivation.
Remember that our system includes not only the shaded portions of water
near point 1 and 2, but also all the water in between those two points. How
will we ever be able to account for all the change in kinetic energy and
gravitational potential energy of all parts of that large and winding system?

Well, we have to make one more assumption to finish the derivation. We're
going to assume that the flow of the fluid is steady. By "steady flow" we mean
that the speed of the fluid passing by a particular point in the pipe doesn't
change. In other words, if you stood and stared at any one particular section
of the transparent pipe, you would see new water moving past you every
moment, but if there's steady flow, then all the water would have the same
speed when it moves past that particular point.
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So how does the idea of steady flow help us figure out the change in energy of
the big winding system of fluid? Consider the diagram below. Our energy
system consists of the greyed out fluid (volume 1, volume 2, and all fluid in
between). In the first image, the system has some amount of total energy

(K + U)initial- In the second image the entire system had work done on it,
gains energy, shifts to the right, and now has some different total energy

(K + U) finai- But notice that the energy of the fluid between the dashed lines
will be the same as it was before the work was done assuming a steady flow.
Water changed position and speed in the region between the dashed lines, but
it did so in such a way that it will be moving with the exact same speed (e.g. v,
and v;) and have the same height as the previous water had in that location.
The only thing that's different about our system is that volume 2 now extends
into a section of the pipe it wasn't in previously, and now nothing in our
system is occupying the old position behind volume 1.
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Overall this means that the total change in the energy of the system can be

found by simply considering the energies of the end points. Namely, we can

take the kinetic and potential energy (K» + Uy ) that now exists in volume 2

after the work was done and subtract the kinetic and potential energy

(K7 + Up) that no longer exists behind volume 1 after the work was done. In
other words, A(K + U)system = (Ko + Ua) — (K7 + Uy). [I still don't get it]

Plugging this into the right hand side of the work energy formula
PIV .PQ p" — &(K + U)Systgn'f we get,

P1V — PQV = (Kg -+ Ifg) — (Kl + U-l)

. . N 1
Now we'll substitute in the formulas for kinetic energy K = E-mv2 and

gravitational potential energy U, = mgh to get,

1 1 5
PV - BV = (ﬁmg’v‘% + mgghg) - (ﬁmlvi + mlghl)
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In this equation P; and P, represent the pressures of the fluid in volumes 1
and 2 respectively. The variables v; and v represent the speeds of the fluid in
volumes 1 and 2 respectively. And h; and hy represent the height of the fluid
in volumes 1 and 2 respectively.

But since we are assuming the fluid is incompressible, the displaced masses of
volumes 1 and 2 must be the same m; = my = m. So getting rid of the

subscript on the m's we get,

1 1,
PV - BV = (Emvg + mghsa) — (Emvf + mghi)

We can divide both sides by V" and drop the parenthesis to get,

1, 1
p-p-2 2 M 3 mgh

V V V V

2
muj
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We can simplify this equation by noting that the mass of the displaced fluid
divided by volume of the displaced fluid is the density of the fluid p = %

Replacing % with p we get,

1 1
P — Py = 5 pvy + pghs — 5 pvi — pgh

Now, we're just going to rearrange the formula using algebra to put all the
terms that refer to the same point in space on the same side of the equation
to get,

1 1
P+ §pv% + pghi = Py + 5,0’0% + pghs

And there it is, finally. This is Bernoulli's equation! It says that if you add up the
. L1 o
pressure P plus the kinetic energy density §pvg plus the gravitational

potential energy density pgh at any 2 points in a streamline, they will be equal.
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Bernoulli's equation can be viewed as a conservation of energy law for a
flowing fluid. We saw that Bernoulli's equation was the result of using the fact
that any extra kinetic or potential energy gained by a system of fluid is caused
by external work done on the system by another non-viscous fluid. You should
keep in mind that we had to make many assumptions along the way for this
derivation to work. We had to assume streamline flow and no dissipative
forces, since otherwise there would have been thermal energy generated. We
had to assume steady flow, since otherwise our trick of canceling the energies
of the middle section would not have worked. We had to assume
incompressibility, since otherwise the volumes and masses would not
necessarily be equal.

. 1 . . .
Since the quantity P + 5,01'9 + pgh is the same at every point in a streamline,

another way to write Bernoulli's equation is,
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1
P+ Epfv? + pgh = constant

This constant will be different for different fluid systems, but for a given
steady state streamline non-dissipative flowing fluid, the value of

1 . . . .
P+ 5,@:)9 + pgh will be the same at any point along the flowing fluid.

How is Bernoulli's principle a result of Bernoulli's
equation?

We should note here that Bernoulli's principle is contained within Bernoulli's
equation. If we start with,

1 1
P, + Epfvf + pgh; = Py, + Epfvg + pghs

and assume that there is no change in the height of the fluid, the pgh terms
cancel if we subtract them from both sides. [How?]

1 1
P + E,O“Urf =P + E,O‘Ug

Or we could write it as,

1
P + Ep*vr‘} = constant

This formula highlights Bernoulli's principle since if the speed v of a fluid is
larger in a given region of streamline flow, the pressure P must be smaller in
that region (which is Bernoulli's principle). An increase in speed v must be
accompanied by a simultaneous decrease in the pressure P in order for the
sum to always add up to the same constant number.
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UNIT-4

Simple Harmonic Motion

We see different kinds of motion every day. The motion of the
hands of a clock, motion of the wheels of a car, etc. Did you ever
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notice that these types of motion keep repeating themselves?
Such motions are periodic in nature. One such type of periodic
motion is simple harmonic motion (S.H.M.). But what is S.H.M.?
Let’s find out.

Introduction to Periodic Motion H

SHM as a projection of circular motion | H

VST Simple Harmonic Motion Problem 4 and its Solution

Periodic Motion and Oscillations

A motion that repeats itself in equal intervals of time is periodic. We
need to know what periodic motion is to understand simple harmonic
motion.

Periodic motion is the motion in which an object repeats its path in
equal intervals of time. We see many examples of periodic motion in
our day-to-day life. The motion of the hands of a clock is periodic
motion. The rocking of a cradle, swinging on a swing, leaves of a tree
moving to and fro due to wind breeze, these all are examples of periodic
motion.

The particle performs the same set of movement again and again in a
periodic motion. One such set of movement is called an Oscillation. A
great example of oscillatory motion is Simple Harmonic Motion. Let’s
learn about it below.

115|Page



Simple Harmonic Motion (S.H.M.)

When an object moves to and fro along a line, the motion is called

simple harmonic motion. Have you seen a pendulum? When we swing
it, it moves to and fro along the same line. These are called oscillations.
Oscillations of a pendulum are an example of simple harmonic motion.

Now, consider there is a spring that is fixed at one end. When there is
no force applied to it, it is at its equilibrium position. Now,

. If we pull it outwards, there is a force exerted by the string that is
directed towards the equilibrium position.

. If we push the spring inwards, there is a force exerted by the string
towards the equilibrium position.

. Ineach case, we can see that the force exerted by the spring is
towards the equilibrium position. This force is called the restoring
force. Let the force be F and the displacement of the string from
the equilibrium position be x.

Therefore, the restoring force is given by, F=—kx (the negative sign
indicates that the force is in opposite direction). Here, k is the constant
called the force constant. Its unit is N/m in S.1. system and dynes/cm in
C.G.S. system.
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Linear Simple Harmonic Motion

Linear simple harmonic motion is defined as the linear periodic motion
of a body in which the restoring force is always directed towards the
equilibrium position or mean position and its magnitude is directly
proportional to the displacement from the equilibrium position. All
simple harmonic motions are periodic in nature but all periodic motions
are not simple harmonic motions.

Now, take the previous example of the string. Let its mass be m. The
acceleration of the body is given by,

a=F/m=-kx/Im=-w

Here, k/m = w2 (w is the angular frequency of the body)
Concepts of Simple Harmonic Motion (S.H.M)

« Amplitude: The maximum displacement of a particle from its
equilibrium position or mean position is its amplitude. Its S.I. unit is
the metre. The dimensions are [L:M° T°]. Its direction is always away
from the mean or equilibrium position.

. Period: The time taken by a particle to complete one oscillation is its
period. Therefore, period if S.H.M. is the least time after which the
motion will repeat itself. Thus, the motion will repeat itself after nT.
where nis an integer.

. Frequency: Frequency of S.H.M. is the number of oscillations that a
particle performs per unit time. S.I. unit of frequency is hertz or
r.p.s(rotations per second). Its dimensions are [L°'M°T"].
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. Phase: Phase of S.H.M. is its state of oscillation. Magnitude and
direction of displacement of particle represent the phase. The phase
at the beginning of the motion is known as Epoch(a)

Difference between Periodic and Simple Harmonic
Motion

Periodic Motion Simple Harmonic Motion
In the periodic motion, the displacement In the simple harmonic motion, the
of the object may or may not be in the displacement of the object is always in
direction of the restoring force. the opposite direction of the restoring

force.

The periodic motion may or may not be Simple harmonic motion is always
oscillatory. oscillatory.
Examples are the motion of the hands of Examples are the motion of a pendulum,
a clock, the motion of the wheels of a motion of a spring, etc.
car, etc.

Solved Questions for You

Q: Assertion(A): In simple harmonic motion, the motion is to and fro
and periodic

Reason(R): Velocity of the particle V = @VA? — x2where X is
displacement as measured from the extreme position

Chose the right answer:

a. Both a and B are true and R is the correct explanation of A.
b. Both A and B are true and R is not the correct explanation of A.

c. Aistrue and R is false.

d. Ais false and R is true.

Solution: ¢) A is true and R is false. V = VA2 — x?is measured from the

mean position. SHM involves to and fro periodic motion.
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Product of Inertia
Product Of Inertia Of A Mass

For an object rotating about an axis, the resistance of a body to accelerate is called inertia of mass. It is
the product of rotating object's mass and square of the span between axis of rotation and mass centre. It
has dimensional unit of MI* T,

Inertia of mass, I = mR*

Consider a rigid body B whose unit vectors and mass centre are depicted in the figure below.

Body, &

I, :I[y2+zz]dm

.l 3
— T :I(x‘+z‘]dm
Moment of inertia of a mass about y-axis, ~ ¥

I, :.[(Jc2 +yz]dm

Here x, y and z are the position vector's components [’]“G }
For any rigid body the product of inertia is given by
= I[xy] dm

Moment of inertia of a mass about x-axis,

Moment of inertia of a mass about z-axis,

For x-y plane: =%

I, = I xz ) dm
For x-z plane: ~* ( ]
I, = [(ve)dm
For y-z plane: ~ ¥ {‘h}
Product of inertia of mass is the symmetric measure for a body. If any one of the three planes is a
symmetric plane, then the product of inertia of the perpendicular planes are zero. If X-Y plane is

symmetric then I, =049 I}i
In case of revolution bodies, the body will be symmetric about two axes, hence two planes will be

symmetric. In such case the product of inertia, for all three planes is zero. “5v — ~az »

Principal Axes of Inertia
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We’ve spent the last few lectures deriving the general
expressions for L. and 7, in terms of the inertia tensor

Both expressions would be a great deal simpler if the
inertia tensor was diagonal. That is, if:

]g‘ :];‘5;;:‘
or
I, 0 O
I={0 7, 0
0O 0 [

3

Then we could write
L=y La=Y 56w, =1
j j

ol =%Zlija)iwj zézlidja)iwj Z%Z]ia)iz
L] i,] i

» We’ve already seen that the elements of the inertia tensor
transform under rotations

» So perhaps we can rotate to a set of axes for which the
tensor (for a given rigid body) is diagonal
— These are called the principal axes of the body

— All the rotational problems you did in first-year physics dealt
with rotation about a principal axis — that’s why the
equations looked simpler.

 Ifabody is rotating solely about a principal axis (call it the
i axis) then:
L=Ilw,orL=]®

1 12
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« If we can find a set of principal axes for a body, we call the
three non-zero inertia tensor elements the principal
moments of inertia

Finding the Principal Moments

In general, it’s easiest to first determine the principal
moments, and then find the principal axes
We know that if we’re rotating about a principal axis, we

have:
L=/o
¥

A principal moment

But the general relation 7, = Z I,, also holds. So,
j
But the general relation [, = Z I, also holds. So,
j
L=lw=1w+I1,0,+I1,0,

L3 :]a)s = 15,0, +]32a)2 +f336r)3
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» Rearranging the equations gives:
(1,,- 1o, +1,0,+1,0,=0
Lo+ (1, -1)w,+1,,0,=0
Lo+ 1,0, +(1;,—1)w,=0

* Linear algebra fact:
— We can consider this as a system of equations for the @,

— Such a system has a solution only if the determinant of the
coefficients is zero

* In other words, we need:

]11 —1 ]12 ]13
1, l,—-1 I, |=0
131 ]32 ]33_1

The determinant results in a cubic equation for /

The three solutions are the three principal moments of
inertia for the body (one corresponding to each principal
axis)

And this brings us the resolution of the apparent
contradiction between freshman-level physics, in which
there were three moments of inertia, and this course, where
we needed 6 numbers

— In the earlier course, only rotations about principal axes were
considered!
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Finding the Principal Axes

« Now all that’s left to do 1s find the principal axes. We do
this by solving the system of equations for @,

— Using one of the possible values of 7 — call it /,
— This will give the direction of the first principal axis

« [t turns out that we won’t be able to find all three
components

— But we can determine the ratio @, © @, : @,

— And that’s enough to figure out the direction of the first
principle axis (in whatever coordinate system we’re using)

Example: Dumbbell

 Consider the same dumbbell that appeared last lecture, and
define the coordinate system as follows:

(=b,b,0)
m

(b,—b,0)
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2b’
2b’
0

2b°
2b°
0

0
0
4b°

=2bh*m

« So the equation we need to solve is:

-1
1
0

2-nD[a-1*=1]=0

1
1-1
0

0
0 |=0
2-1

2-Dlrr-211=0
1Q2-1)(I=-2)=0
1=(0,2 or 2) x2mb*

 Let’s find the principal axis associated with /= 0:
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* So the ratio of the angular momentum components in our
coordinate system when the object it rotating about the
principal axis with /=0 1s:

@ 0=1:-1:0
meaning the axis is defined by the vector:
r=e —e,
In other words, along the axis of the dumbbell
If an object has an axis of symmetry, that axis 1s
always a principal axis
» What about the other principal axes?
— The axes associated with I = 4mb? are:

-0, +w, =0
W —w, =0
0=0

» There’s not much information in those equations!
— For example, the z component could be anything

» This means that any two axes perpendicular to the axis of
the dumbbell can be taken as principal axes

« Note that the principal axes one finds can depend both on
the shape of the body and on the point about which 1t’s
rotating
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When Can We Find Principal Axes?

* We can always write down the cubic equation that one
must solve to determine the principal moments

« But if we want to interpret these as physically meaningful
quantities, the roots of that cubic have to be real

— Recall that in general, cubics can have two complex roots
» Fortunately, we’re not in the general case here

* The mertia tensor is both real and symmetric — in
particular, it satisfies:

» Matrices that satisfy this restriction are called Hermitian

» For such matrices, the principal moments can always be
found, and they are always real (see proof in text)

This mathematics will come up again in Quantum Mechanics
Principal Moments <> Eigenvalues
Principal Axes <> Eigenfunctions

KEXEIXEIEEEIEEIEEXXKAXAAAIAEIAEIETITALAAAAAAAEAEAAAAAAAXX
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UNIT-5

. Relativistic Mechanics
Introduction
We know that Newton's laws of motion hold and are invariant in inertial frames of
reference that are related by the Galilean transformation. But it is the Lorentz trans-
formation rather than the Galilean transformation that is correct. That means that the
laws of classical mechanics cannot be correct, and we must find new laws of relativistic
mechanics.
In doing so, we will be guided by 3 principles:

1. A correct relativistic law must hold in all inertial frames, i.e., it must be invariant
under the Lorentz transformation.

2. Relativistic definitions and laws must reduce to their nonrelativistic counterparts
when applied to systems moving much slower than the speed of light.

3. QOur relativistic laws must agree with experiment.

Mass
How do we define mass m? We know that at slow speeds, mass can be defined
classically by m = F/a. In relativity we will measure the mass m of an object in its rest
frame. This is called the rest mass or the proper mass. Observers in different rest
frames could measure the mass of an object by bringing the object to rest in their frame
of reference, and then measuring its mass. The mass theyv would measure would be the
same in all inertial reference frames.
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Relativisitic Momentum
Classically, momentum is defined by

p=mi (1)

where m and @ the mass and velocity of an object. What is the correct relativistic
definition of momentum? We have the freedom to define momentum any way we like,
but to be useful. we would like to define it such that total momentum is conserved in all
inertial frames.

Recall the law of momentum conservation. If there are n bodies with momenta g,
<eey Pn, then, in the absence of external forces, the total momentum is given by

S 5=+ + (2)

cannot change. We would like to define momentum relativistically to preserve conserva-
tion of momentum.

As your book describes in section 2.3, we can't use the classical definition Eq. (1)
because of the way velocity transforms between reference frames. For example, the way
u, transforms in going from S to 5 depends on u,. The classical definition of momentum

is .
—

7= i = — 3

p=mi=m— (3)
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Classical

~~Relativistic

Figure 1: Velocity versus momentum.

The problem is that both 7 and ¢ are subject to the Lorentz transformation and that
makes things messy.
The relativistic way to define momentum is

. dr
p= md_tn {‘1)

where tg is the proper time, i.e., the time measured in the rest frame of the particle or
object. Notice that with this definition,

Py =m—= (5)

which is invariant when one goes between reference frames that are moving relative to
one another along the r—axis. That is because t; is invariant and y = y'. Similarly for

By
Since dt = ydty where v = 1/4/1 — u?/c*, we can write
. mii
=
V1 —u?fct

A constant force changes the momentum and hence the velocity. Notice that as u — ¢,
7 and hence p increase without limit, but the speed u never reaches the speed of light
(see plot of u versus p in Fig 2.2 of your book). Thus no object can go faster than the
speed of light.

We can define a relativistic mass M(u) by

= ymil (6)

M

V1 —u?fe

M(u) = = M~ (7)

129 |Page



Your book calls this a variable mass my,,, but it doesn’t want to use this. However, it
does make it easy to write the momentum in the traditional form

p= Mu)i (8)

Notice from Eq. (7) that if the speed u of an object with nonzero mass is equal to the
speed of light, the relativistic mass is infinity. If the object’s speed exceeds the speed of
light, then the relativistic mass M (u) is imaginary. Clearly, this is absurd and so, once
again, the velocity of an object cannot exceed the speed of light. If the object has mass,
it cannot travel at the speed of light; its speed must be less than the speed of light.
Relativistic Energy
Now we need to define a relativistic energy. We will use 2 criteria:

1. When applied to slowly moving bodies, the new definition reduces to the classical
definition.

2. The total energy ¥ F of an isolated system should be conserved in all reference
frames.

The relativistic energy that satisfies these requirements turns out to be

E= L = ymc® (9)

V1—u2fc?
This applies to any single body, no matter how big or how small. Notice that the units
are right. (It’s always important to check units.) 7 is dimensionless, and mc® has units
of energy. (Recall that kinetic energy is (1/2)mv?.)
Now let's take the nonrelativistic (slow) limit u < ¢. Then

w2\ V2 1u?
'}':(1—?) ﬁ]+§r—2 (10)
Therefore, when u < ¢,
1o 1
E=~ymc® = (1 + 52—2) me” = mc® + Emuz (11)

The first term is a constant independent of the speed u, and we can always add a constant
to the energy since we can set the zero of the energy (E = (1) anywhere. The second
term is just the usual classical expression for the kinetic energy. So our definition of the
relativistic energy satisfies the criterion of reducing to the classical kinetic energy in the
nonrelativistic (slow) limit.

Now let's look at that constant me®. If the object is at rest, then u = 0, v = 1, and
Eq. (9) reduces to the famous equation

E =mé (12)
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This is called the rest energy of the mass m. If we could convert a mass m completely
into energy, then this is the amount of energy we would get. It’s a lot of energy because
the speed of light ¢ is so large. and ¢* is even larger. For example, the rest energy of a 1
kg lump of metal 1s

E =me* = (1kg) x (3 x 10° m/s)* = 9 x 10" joules (13)

which is about the energy generated by a large power plant in one vear. E = mc?® is the
basic equation behind nuclear power, and atomic bombs. These are powered by nuclear
fission in which, typically, uraninm 235 nuclei are split apart, converting about 1/1000 of
the rest energy into heat. Thus 1 kg of ***U can yield a fantastic amount of heat (9 x 10"
J).

When an object is not at rest, its energy E = yme? is the sum of its rest energy me®
plus its kinetic energy K = (E — mc?):

E=md + K (14)

where

K = E —mc® = (v - 1)me? (15)
1
z
relativistic limit of u — e, we get something quite different. Because -+ can approach
infinity, K can approach infinity even though the speed u can never reach the speed of
light ¢. Notice that K, like its classical counterpart, is always positive (K = 0).

Two Useful Relations

In the nonrelativistic limit K = -mu?, the classical kinetic energy. However, in the

Let's derive 2 useful relations starting from

p=ymiu (16)

and
E = ymc® (17)

If we divide Eq. (16) by Eq. (17). we obtain

or

(19)

which give the dimensionless velocity 3 = ti/c in terms of p'and E. Notice that pc has
dimensions of energy, so the ratio pc/E is dimensionless, just like 5. Eq. (19) is one
useful relation.

The other is

2

E? = (pc)* + (mcz) (20)
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This has the same form as the Pythagorean relation for a right triangle with sides pe
and mc® and hypotenuse E. though there isn't any deep meaning to this. To show that
this is correct, we can plug in E = yme® and p = ymu, solve for 4% and show that this
reduces to the definition 4* = (1 — v*/c*)~1.
Units

Since we are dealing with small things, we should use appropriate units. For example,
if I ask how tall you are, vou would tell me so many feet and so many inches. You could
give me yvour height in miles or light vears, but those are not appropriate units. Similarly,
joules is not an appropriate unit for atomic and subatomic particles like electrons. The
commonly used unit is the electron volt or V. This is defined as the amount of work
needed to move an electron (g = —e = —1.60 x 107" Coulomb) through a voltage drop
of 1 volt (AV = —1 volt); thus

1eV =gAV = (—1.6[} x 107" C) x (—1 Volt) = 1.60 x 107 J (21)

Typical atomic energies are on the order of 1 eV or so, while those in nuclear physics are
on the order of 10° eV = 1 MeV.

Masses of particles are often given in eV with the understanding that they are referring
to the rest energy me®. Techically, the mass is properly in units of eV /c?. So, for example,
the “mass” of the electron is given as 0.511 MeV, meaning mec? = 0.511 MeV. Similarly,
when momentum p is given in units of MeV, they really mean the quantity pe, or the
units of [p] is eV /e.

If vou look up a table for the mass of atoms, the mass is often given in atomic mass
units (denoted u). The conversion is

1u=166x 10" kg (22)

Conversion of Mass to Energy

The famous equation E = mc® implies that if you can convert mass into energy, then
you would get a lot of energy because the speed of light squared is so big. So does matter
get converted to energy? The answer is yves. An example where this happens for atomic
nuclei is when atomic nuclei break apart, either because they are unstable (radioactive)
or because they are forced apart by an incoming particle (e.g., a neutron) in a process
called fission. This is the principle behind atomic power plants like San Onofre.

Let’s suppose that a nucleus at rest has a mass M, so that the initial energy is M2
Then suppose the nucleus breaks apart due to radicactive decay in which pieces of the
miclenus go Hying apart. The energy then is a combination of the kinetic energy K of the
pieces and their rest energy. Suppose that the nucleus breaks into 2 pieces. Since total
energy (including the rest mass energy) is conserved, we have

M# = E+E,
(K1 + mlr:?] + (K2 + mzc‘z]
{Kl + Kz} + {mle':? + m2C2] {23)
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The sum of the masses of the pieces (m; + mpy) is less than the initial mass M, so there
is a difference between the initial mass and the total final mass:

AMcE = Mc* = (my +my)c? (24)

The missing mass is converted into the kinetic energy of the fragments Hlying apart:
AMS =K, + K, (25)

For example, your book considers the radioactive decay of **Th via the reaction
H2Th 5™ Ra +" He (26)

The sum of the masses of 2** Ra and *He nuclei is 0.004 u smaller than the original ***Th
nucleus. Since 1 u = 1.66 x 10727 kg, this corresponds to 7 x 107 kg. This missing
mass is converted into kinetic energy because the products (**Ra and ‘He) fly apart.

The amount of kinetic energy is

AME = (7Tx 107 kg) (3 x 10° m/s)’
= 4MeV (27)
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If we reversed the process and forced the 2 pieces together to form the original nucleus,
it would take work. The amount of energy we would have to expend would be AM¢?. In
other words, energy we put in would be converted into the additional mass so that the
rest mass M of the final nucleus would be greater than the sum m, + m..

So sometimes we need to add energy to merge or fuse 2 pieces together. However,
sometimes, the opposite can happen. In particular, energy can be released when 2 things
are brought together to form a more stable (lower energy) thing. For example, if we bring
together an electron and a proton to form a hyvdrogen atom, then 13.6 eV is released.
This is called the binding energy since is the amount of energy that would be required
to pull apart the proton and electron in a hydrogen atom. If we add the mass m,. of a
free electron (free means it is floating around, and is not bound inside an atom), and the
mass m,, a free proton, the sum is 13.6 eV /c? greater than the mass My of a hydrogen
atom. This is another example of mass being converted into energy. In symbols:

mec” + mye® = Myc® + B (28)

where B is the binding energy. So the binding energy corresponds to the rest energy of
the missing mass:
B= (mgr:? + ?npr:?) - Mc* (29)

Similarly, when atoms are combined to form stable molecules, binding energy is released.
Energy is also released when nuclei are forced together to form bigger stable nuclei in
a process called fusion. For example, 4 hydrogen atoms can be fused to make 1 helium
atom. This releases binding energy. This is what powers the sun and hvdrogen bombs.
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Example: A Decay
The A particle is a subatomic particle that can spontaneously decay into a proton
and a negatively charged pion.
A=p+m (30)
The sum of the mass of the proton and the pion will be less than that of the A. In a certain
experiment, the outgoing particles were traveling in the +x direction with momenta p, =

581 MeV /e and p,=256 MeV /c. The rest masses are m, = 938 Mev/c* and m, = 140
MeV /c*. Find the rest mass my of the A.
To solve this problem. let us start with

E? = (pc)* + (me®)’ (31)

Solving for the mass of the A gives

(32)

So we need the energy and the momentum of the A to find the mass. First we find the
energy using Eq. (31)
E? = (pc)* + (mé?)? (33)

This gives E, = 1103 MeV and E; = 292 MeV. So

Ex=E, + E; = 1395 MeV (34)
Conservation of momentum gives

Pa = Py + Pr = 837 MeV /e (35)

where the momenta are all pointing along the positive r axis. Now that we know E, and
pa, we can Eq. (32) to find the mass:

ER — {Pﬁﬂ)?

= = 1116 MeV /c? (36)

My =

This is how many masses of unstable subatomic particles are measured.
Force in Relativity
There are 2 definitions of force in classical mechanics:

F =ma (37)
and p
_ :
F = T (38)
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These are equivalent because p = mu, so dp/dt = ma. But in relativity, p = ymu, so
dp/dt # ma. In relativity, the most convenient definition of force turns out to be

PP

== (39)

Example 2.9 shows that this definition of force allows the work-energy theorem to remain
valid. Namely,

F.dr=dE (40)

This says that if a mass m, acted on by a force F, moves a small distance dr, the change
in its energy, dFE. equals the work done by F.
This definition of force allows us to keep the Lorentz force law intact:

F = g(E + u x B) (41)

One easy application of this equation is when a particle with charge ¢ moves with velocity
u perpendicular to a uniform field B. The particle’s energy is constant because no work
is done on it. To see this, look at the work-energy theorem. It turns out that the foree
is perpendicular to the direction of motion of the particle because the particle moves
in a circle and the force points radially in towards the center of the circle. Therefore,
since the energy (E = yme?) is constant, the velocity is constant in magnitude and only
changes direction. To see that it moves in a circle, start with

]
.-TI: —quxB (42)
which we can write as
'md—u =qu x B (43)
g T ‘

Use acceleration a = du/dt and the fact that u is perpendicular to B to write
yma = quB (44)

For motion in a circle of radius R, the centripetal acceleration a = u*/R. The reason is

the same in relativity as in classical mechanics. Using vmu = p, we can solve for K and
write v
R=— 45
= (45)

or
p=qBR (46)

This provides a convenient way to measure the momentum of a particle of known charge
q. We know the applied field B and we can measure the radius R of the circle.
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For example, suppose we want to find the momentum of a proton moving perpendic-
ular to a uniform magnetic field B = 1.0 tesla (T) in a circle of radius 1.4 m. We plug
this into Eq. (46) using g = e = 1.6 x 107" C. This gives

p = gBR=(16x10""C) x (1.0T) x (1.4 m)
= 224 x 107" kg — m/s (47)

Using the conversion 1 MeV /e=5.34 x 10=%* kg-m /s, we can change units:

1 MeV /e
534 x 102 kg — m/s

p=1(224x 107" kg — m/s) x = 420 MeV [c. (48)
Since the proton's rest mass is known to be m = 938 MeV /¢?, we can find its energy
from the “Pythagorean relation” to be

E = /(pc)? + (me?)2 = 1030 MeV (49)

Massless Particles

Is it possible to have massless particles? Classically, the answer is “no.” Momentum
(p = mu) and kinetic energy (K E = mu®/2) are proportional to the mass m. If m = 0,
then p = E = (). One might think the same would be true relativistically since p = vmu
and E = ymc®. Again, p and E are proportional to m and m = 0. But what if the
massless particle travels at the speed of light? Then v = oo, and vm = () - oo which is
ill-defined.

It's better to go back to

E? = (pe)? + (me?)? (50)
and U pc

If m =0, then these equations reduce to
E =pc (52)

and
pe u

;'3’=E=1=E or u=rc (53)

So the massless particle travels at the speed of light. Conversely, if we discovered a
particle that traveled at speed ¢, then 5 = u/c would equal 1=pc/E. That would mean
E = pr and hence, that m = (), i.e.. it would be a massless particle. So massless particles
travel at the speed of light, and particles that travel at ¢ must be massless. Particles
with nonzero mass must travel at less than the speed of light.
Do massless particles exist? Yes. The best known massless particle is the photon
which is a particle of light. As we will discuss more later, light can be described in 2
ways: (1) as an electromagnetic wave, and (2) as particles or packets of energy called
photons.
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To find the energy and momentum of a massless particle, we look at a reaction that
it is involved in, e.g., photolonization of hydrogen in which a photon hits the electron in
a hydrogen atom, causing the electron to be ejected:

Y+ H—=e+p (54)

where - is the symbol for a photon. We measure the momentum and energy of the
particles with mass, then use conservation of energy to deduce the energy and momentum
of the massless particle.

Another example of a massless particle is the graviton but there is no experimental
evidence for the graviton. It used be accepted that the neutrino had no mass, but now
there is experimental evidence that it does have a little bit of mass.

Example: Electron-Positron Annihilation

You've probably heard that when matter and antimatter collide, they annihilate and
release a lot of energy. The positron is an anti-electron, i.e., it’s the antimatter version
of an electron. It is exactly like an electron except that it has a positive charge (+¢).
The positron has the same mass as an electron. Suppose a positron and an electron are
both at rest with no momentum. So they only have their rest mass energies: m.c® and
mye® = myc?. Then when they annihilate, 2 photons are produced. Conservation of
momentum requires that their total momentum is zero, and the sum of their total energy

is 2m.c?:
p1+p:=10 (55)

and

E) + E; = 2m.é* (56)

So the photons that are created must have equal and opposite momenta:

P1= —P2 (57)
Since E = pe for photons, the photons must have equal energies: Ey = Es, and
E, = E, = mc® = 0511 MeV (58)

So all the rest mass energy is converted into electromagnetic energy.

Positrons are used in PET scans. PET stands for Positron Emission Tomography.
This is a medical diagnostic probe in which a patient is injected with a radicactive
positron emitter (like carbon 11) in a suitably chosen solution like glucose (sugar) that
will tend to collect in the brain, for example. Once in the brain, the emitted positrons
annihilate with nearby electrons, and photons are emitted that are detected by a ring of
detectors. In this way, it is possible to create an accurate map of the areas of interest.

‘When is nonrelativistic mechanics good enough?

The relativistic equations all reduce to their classical counterparts in the limit of low
speeds (v < ¢). When should one use the relativistic formulae and when is it good
enough to use the classical equations? There is no clear-cut answer. It depends on what
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vou need it for. For example, GPS (Global Positioning System) needs an accuracy of 1
ns, so relativistic effects must be taken into account. Table 2.4 of your book compares the
values of the kinetic energy calculated with relativistic and classical formulas for various
values of the velocity. As a general rule of thumb, you can ignore relativisitic effect if the
speeds are 0.1c or less, or if a particle’s kinetic energy K is much less than 1% of its rest
energy. (Recall that K goes as u?, so this is why a speed of (.1¢ corresponds to 0.01%
of the energy.) For speeds greater than (.1c or kinetic energies greater than 0.01mc?,
relativistic effects probably need to be taken into account, and relativistic equations
should probably be used.
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L.orentz Transformation

Fixed frame

Moving frame

y4 z'
y y'
IZ>V
X' )
= X = =

The primed frame moves with velocity v in the x
direction with respect to the fixed reference frame. The
reference frames coincide at t=t'=0. The point X' i3

moving with the primed frame.

The reverse transformation 1s:
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C 2
Much of the literature of relativity uses the
symbols B and y as defined here to simplify the writing of relativistic
relationships.
Variation of Mass with Velocity

Consider two frames of references S and S'. Further, S' is moving with constant velocity v along X-d
consider the collision of two exactly similar balls A and B, each of mass m, moving in opposite dire

collision they coalesce into one body.

Applying the, law of conservation of momentum on the collision of the balls in frame s', we have
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momentum of balls momentum of balls
before collision |~ after collision

miu’ +m(-u") =0

After collision, the coalesced mass must be at rest in frame S'. Hence, it
moves with velocity v in frame S. Let u;,u» be the velocities and m,, m. be
the masses of balls A and B, respectively, in frame S. Using the law of
addition of velocities, the above velocities can be written as

u 4+
th = ' _
I+7 ) = “—"H"
= 1 _ up
2 (2

Applying the law of conservation of momentum
on the collision of the balls in frame s, we have

ma; + Malle = (M; + M)v....(3)

Substituting u, and u. values from Equations (1) and (2), we have
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my — |+, — | =[m, +m,]v or
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1+ Il— .
¢ €
u 4+ -+
e — m—
m, . M = M, — My -
w'y W'
1+— 1-—
3 £
W+ —i' 4+
m —p|=m,|v— or
L w'o 2 W'
1+— 1-—
¢
r 2 -
v 'y
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£ €
w'e? . '
W —— W= uu
my £ =M, £ or 1 1+ 7
g o — L
1M 1 @ _— = —
- u'y
2 E a2 1 — =
‘ ‘ = 2 ()

The above equation makes a relationship between the masses of balls in frame S and
their velocities in frame S'. Now, to obtain relation between masses of balls and their
velocities in frame S, we proceed as follows. Squaring Equation (1)

, (w4
T wel
1+
fl
and using the above equation, the value
2
! 1_‘”_; 15
(4
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Therefore,
2 u'? e
1 i _[ _c_'z]“_c_'z]
2 u'v )2
c (1+ P ) (3)

Similarly, using equation (2) we get

w? (1= — %)
2

€ (1—1)2 .(6)

Dividing Equation (6) by Equation (5) and taking square root throughout,
we have

1 —

s 2 .
1-F 1+%
=~ = uy
1 — 'ul; 1 - p:
E A7)

Comparing Equations (4) and (7), we have
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Suppose, m. is at rest in frame s, then u. = 0 and m. = mo (say) where mo is
the rest mass of the ball B, thenEquation (19.48) becomes

1 Iy

As both the balls are similar, hence the rest masses of both balls are the
same, so we can write the rest mass of m. is equal to rest mass of m;, that is
equal to m,. Then, Equation (9) becomes

e (10)
Here, m; is the mass of ball A when it is moving with velocity u; in
frame s. After collision, the coalescent mass containing mass of ball A moves with velocity v in frame s.

In general, if we take the mass of ball A as m, when it is moving with velocity v in frame s, then

where m, is the rest mass of the body and m is the effective mass.

Equation (11) is the relativistic formula for the variation of mass with velocity. Here, we see some special
cases:

Case (i): When the velocity of the body, v is very small compared to velocity of height, ¢, then v2/c2 is
negligible compared to one. Therefore,

m = Mo*
Case (ii): If the velocity of the body v is comparable to the velocity of light c,

i)
N e

1
then is less than one, so, m> m,.
The mass of a moving body appears greater than its rest mass.

Case (iii): Suppose the velocity of a body is equal to velocity of light, ¢, then, it possess infinite mass.
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The effective mass of particles has been experimentally verified by using particle accelerators in case of
electrons and protons by increasing their velocities very close to velocity of light.

Aryabhatta was an extraordinary teacher and scholar who had immense

knowledge about mathematics and astronomy. He suggested the heliocentric theory
which proved that the sun is located in the centre of the solar system and all the
planets revolve around it. In fact he made this discovery way before Copernicus made
this discovery in the West.

Aryabhatta was born in Kerala and lived from 476 AD to 550 AD, he completed his
education from the ancient university of Nalanda and later he moved to Bihar and
continued his studies in the great centre of learning located in close proximity to
Kusumapura in Bihar and lived in Taregana District in Bihar in the late 5th and early
6th century.

His contribution to the astronomy

The astronomical calculations and deductions suggested by Aryabhatta are
extraordinary by the fact that he didn’t have any modern equipment or instrument to
do it. He had a very sharp brain and his dedication and hard work led him to solve the
various mysteries of the solar system. He also deduced that the earth is round in shape
and rotates along its own axis, which forms the existence of day and night. Many
superstitious beliefs were challenged by him and he presented scientific reasons to
prove them wrong.

He also said that the moon has no light and shines because it reflects light from the
sun. He also proved wrong the false belief that eclipse is caused because of the
shadows formed by the shadows cast by the earth and the moon. Aryabhatta used
epicycles in a similar manner to the Greek Philosopher Ptolemy to illustrate the
inconsistent movement of some planets. This great astronomer wrote the famous
treatise Aryabhatiya, which was based on astronomy in 499 AD. This treatise was
acknowledged as a masterpiece. In honour of this excellent work Aryabhatta was
made head of the Nalanda University by the Gupta ruler Buddhagupta.
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Gilbert and the amber force: 1600

The year 1600 is a good one for William Gilbert. He is appointed court physician
to Queen Elizabeth, and the summary of his life-long research into magnetism is
published as De magnete, magneticisque corporibus, et de magno magnete
tellure (Of the magnet, of magnetic bodies, and of the earth as a great magnet).

As the title states, Gilbert's work has led him to the grand conclusion that
compasses behave as they do because the earth itself is a vast magnet. He
introduces the term 'magnetic pole', and states that the magnetic poles lie near the
geographic poles.

Gilbert describes useful practical experiments, revealing how iron can be
magnetized for use in compasses without relying on rare and expensive lodestone.
Hammering the metal will do the trick, if the iron is correctly aligned with the
earth's magnetic field.

Gilbert's researches also involve him in the mysterious property of amber,
recognized 2000 years previously by Greek scientists. He identifies this as a force
and coins a term for it from elektron, the Greek for amber. He calls it, in an
invented Latin phrase, vis electrica- the 'amber force'. Electricityhas found its
name.

Galileo and the Discorsi: 1634-1638

In December 1633 Galileo is place under house arrest, on the pope's orders,
because of his work on astronomy. Finding himself confined to his small estate at
Arcetri near Florence, his response is typically positive. He settles down to explain
and prove his early and less controversial discoveries in the mechanical sciences.

Two are particularly well known. The first he is said to have observed as a student
in Pisa, when he watches a lamp swinging in the cathedral, times it by his own
pulse, and discovers that each swing takes the same amount of time regardless of
how far the lamp travels. At Arcetri he demonstrates this principle of the pendulum
experimentally, and suggests its possible use in relation to clocks.

147 |Page


http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=dpw#dpw
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=krk#krk
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=hid#hid
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?gtrack=pthc&ParagraphID=hqr#hqr

His other most famous discovery in physics, proved theoretically in about 1604
when he is professor of mathematics in Padua, is that bodies falling in a vacuum do
so at the same speed and at a uniform rate of acceleration. (There is as yet no
vacuum in which to demonstrate this law, but Boyle is able to do so later in the
century.) While at Padua Galileo also works out the laws of ballistics, or the
dynamics of objects moving through the air in a curve rather than falling directly to
earth.

Written up and proved mathematically during 1634, these theorems are published
in Leiden in 1638 as the Discorsi e dimostrazioni matematiché intorno a due nuove
scienze attenenti alla mecanica et i movementi locali.

Galileo's title claims to introduce two new sciences, mechanics and 'local
movements', and his book stands at the start of mathematical physics. He is the
first to use mathematics to understand and explain physical phenomena, and he is
the first to make rigorous use of experiment to check results provided by theory.
The attractive notion of his dropping weights from the leaning tower of Pisa, to
check on the behaviour of falling bodies, is only a legend. But he certainly, if more
mundanely, rolls balls down inclined planes for the same purpose.

Galileo provides the foundation on which Newton (born in the year of Galileo's
death) soon builds.
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Barometer and atmospheric pressure: 1643-
1646

Like many significant discoveries, the principle of the barometer is observed by
accident. Evangelista Torricelli, assistant to Galileo at the end of his life, is
interested in why it is more difficult to pump water from a well in which the water
lies far below ground level. He suspects that the reason may be the weight of the
extra column of air above the water, and he devises a way of testing this theory.

He fills a glass tube with mercury. Submerging it in a bath of mercury, and raising
the sealed end to a vertical position, he finds that the mercury slips a little way
down the tube. He reasons that the weight of air on the mercury in the bath is
supporting the weight of the column of mercury in the tube.

If this is true, then the space in the glass tube above the mercury column must be a
vacuum. This plunges him into instant controversy with traditionalists, wedded to
the ancient theory - going as far back as Aristotle - that 'nature abhors a vacuum'.
But it also encourages von Guericke, in the next decade, to develop the vacuum

pump.

The concept of variable atmospheric pressure occurs to Torricelli when he notices,
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In 1643, that the height of his column of mercury sometimes varies slightly from
its normal level, which is 760 mm above the mercury level in the bath. Observation
suggests that these variations relate closely to changes in the weather. The
barometer is born.

With the concept thus established that air has weight, Torricelli is able to predict
that there must be less atmospheric pressure at higher altitudes. It is not hard to
imagine an experiment which would test this, but the fame for proving the point in
1646 attaches to Blaise Pascal - though it is not even he who carries out the
research.

Having a weak constitution, Pascal persuades his more robust brother-in-law to
carry a barometer to different levels of the 4000-foot Puy de Déme, near Clermont,
and to take readings. The brother-in-law descends from the mountain with the
welcome news that the readings were indeed different. Atmospheric pressure
varies with altitude.

Von Guericke and the vacuum: 1654-1657

Spectators in the town square of Regensburg, on 8 May 1654, are treated to
perhaps the most dramatic demonstration in the history of science. Otto von
Guericke, burgomaster of Magdeburg and part-time experimenter in physics, is
about to demonstrate the reality of a vacuum.

Aristotle declared that there can be no such thing as empty space, but von Guericke
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has spent several years perfecting an air pump which can achieve just that. He now
produces two hollow metal hemispheres and places them loosely together. There is
no locking device. VVon Guericke works for a while at his pump, attached by a tube
to one of the hemispheres. He then signals that he is ready.

Sixteen horses are harnessed in two teams of eight. Each team is attached to one of
the hemispheres. Whipped in opposite directions, the horses fail to pull the sphere
apart. Yet when von Guericke undoes a nozzle of some kind, the two halves
separate easily.

A mysterious point has been very forcefully made. Von Guericke's experiments are
first described in a book of 1657 (Mechanica Hydraulica-Pneumatica by Kaspar
Schott). The vacuum thus becomes available to the scientific community as an
experimental medium. VVon Guericke himself uses it to demonstrate that a bell is
muffled in a vacuum and a flame extinguished. Robert Boyle, too, soon borrows
the device.

Robert Boyle: 1661-1666

The experimental methods of modern science are considerably advanced by the
work of Robert Boyle during the 1660s. He is skilful at devising experiments to
test theories, though an early success is merely a matter of using von Guericke's air
pump to create a vacuum in which he can observe the behaviour of falling bodies.
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He is able to demonstrate the truth of Galileo's proposition that all objects will fall
at the same speed in a vacuum.

But Boyle also uses the air pump to make significant discoveries of his own - most
notably that reduction in pressure reduces the boiling temperature of a liquid
(water boils at 100° at normal air pressure, but at only 46°C if the pressure is
reduced to one tenth).

Boyle's best-known experiment involves a U-shaped glass tube open at one end.
Air is trapped in the closed end by a column of mercury. Boyle can show that if the
weight of mercury is doubled, the volume of air is halved. The conclusion is the
principle known still in Britain and the USA as Boyle's Law - that pressure and
volume are inversely proportional for a fixed mass of gas at a constant
temperature.

Boyle's most famous work has a title perfectly expressing a correct scientific
attitude. The Sceptical Chymistappears in 1661. Boyle is properly sceptical about
contemporary theories on the nature of matter, which still derive mainly from the
Greek theory of four elements.

His own notions are much closer to the truth. Indeed it is he who introduces the
concept of the element in its modern sense, suggesting that such entities are
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'primitive and simple, or perfectly unmingled bodies'. Elements, as he imagines
them, are 'corpuscles' of different sorts and sizes which arrange themselves into
compounds - the chemical substances familiar to our senses. Compounds, he
argues, can be broken down into their constituent elements. Boyle's ideas in this
field are further developed in his Origin of Forms and Qualities(1666).

Chemistry is Boyle's prime interest, but he also makes intelligent contributions in
the field of pure physics.

In an important work of 1663, Experiments and Considerations Touching Colours,
Boyle argues that colours have no intrinsic identity but are modifications in light
reflected from different surfaces. (This is demonstrated within a few years

by Newton in his work on the spectrum.)

As a man of his time, Boyle is as much interested in theology as science. It comes
as a shock to read his requirements for the annual Boyle lecture which he founds in
his will. Instead of discussing science, the lecturers are to prove the truth of
Christianity against 'notorious infidels, viz., atheists, theists, pagans, Jews and
Mahommedans'. The rules specifically forbid any mention of disagreement among
Christian sects.

Newton in the garden: 1665-1666

The Great Plague of 1665 has one unexpected beneficial effect. It causes
Cambridge university to close as a precaution, sending the students home. A not
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particularly distinguished member of Trinity College, who has recently failed an
examination owing to his feeble geometry, travels home to the isolated
Woolsthorpe Manor in Lincolnshire.

He spends there the greater part of eighteen months, one of the most productive
periods in scientific history. With time for uninterrupted concentration, he works
out the binomial theorem, differential and integral calculus, the relationship
between light and colour and the concept of gravity. The student is the 22-year-old
Isaac Newton.

The famous detail of the falling apple in the garden of Woolsthorpe Manor, as the
moment of truth in relation to gravity, provides the perfect seed for a popular
legend. But the story is first told in the next century, by Voltaire, who claims to
have had it from Newton's step-niece. In reality it is the moon which prompts
Newton's researches into gravity.

Meanwhile his discoveries in relation to light and colour bring him his first fame.

Newton and Opticks: 1666-1672

Returning to Cambridge in 1666, and discussing there his new discoveries, Newton
wins an immediate reputation. In 1669, when still short of his twenty-seventh
birthday, he is elected the Lucasian professor of mathematics. His lectures and
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researches are mainly at this stage to do with optics. He invents for his purposes a
new and more powerful form of telescope using mirrors (the reflecting telescope,
which becomes the principle of all the most powerful instruments until the
introduction of radio astronomy).

In 1672 he presents a telescope of this kind to the Royal Societyand is elected a
member. Later in this same year he describes for the Society his experiments with
the prism.

In this famous piece of research Newton directs a shaft of sunlight through a prism.
He finds that it spreads out and splits into separate colours covering the full range
of the spectrum. If he directs these coloured rays through a reverse prism, the light
emerging is once again white. However if he isolates any single colour, by sending
it to the second prism through a narrow slot, it will emerge as that same colour,
unchanged.

It has often previously been observed that light passing through a medium such as

a bowl of water can change colour, but it has been assumed that this colour is
imparted by the glass or water.

Newton's reversible experiment proves that the phenomenon is an aspect of light
itself. Different wavelengths of light have different angles of refraction, with the
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result that the prism separates them. White light, containing all the wave lengths,
can be transformed back and forth. Light of a single wave length and colour can
only remain itself.

It follows from this that the perceived colour of different substances derives from
the particular wavelengths of light which they reflect to the eye; or, in Newton's
words, that 'natural bodies are variously qualified to reflect one sort of light in
greater plenty than another'. The sciences of colour and of spectrum analysis begin
with this work, which Newton eventually publishes in 1704 as Opticks.

Newton and gravity: 1684-1687

In 1684 Edmund Halleyvisits Newton in Cambridge. Hearing his ideas on the
motion of celestial bodies, he urges him to develop them as a book. The result is
the Principia Mathematica (in full Philosophiae Naturalis Principia Mathematica,
Mathematical Principles of Natural Philosophy), published in 1687. When lack of
funds in the Royal Society seems likely to delay the project, Halley pays the entire
cost of printing himself.

The book, one of the most influential in the history of science, derives from the
young Newton's speculations about the moon during his time at Woolsthorpe
Manor two decades earlier.
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The question which stimulated his thoughts was this: what prevents the moon from
flying out of its orbit round the earth, just as a ball being whirled on a string will
fly away if the string breaks? The ball, in such an event, flies off at a tangent.
Newton reasons that the moon can be seen as perpetually falling from such a
tangent into its continuing orbit round the earth.

He calculates mathematically by how much, on such an analogy, the moon is
falling every second. He then uses these figures to calculate, on the same principle,
the probable speed of a body falling in the usual way in our own surroundings. He
finds that theory and reality match, in his own words, 'pretty nearly'.

The word gravity is already in use at this time, to mean the quality of heaviness
which causes an object to fall. Newton demonstrates its existence now as a
universal law: 'Any two particles of matter attract one another with a force directly
proportional to the product of their masses and inversely proportional to the square
of the distance between them.'

With this observation he introduces the great unifying principle of classical

physics, capable of explaining in one mathematical law the motion of the planets,
the movement of the tides and the fall of an apple.

The Leyden jar: 1745-1746

The researches of William Gilbert, at the start of the 17th century, lead eventually
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to simple machines with which enthusiasts can generate an electric charge by
means of friction. The current generated will give a stimulating frisson to a lady's
hand, or can be discharged as a spark.

In 1745 an amateur scientist, Ewald Georg von Kleist, dean of the cathedral in
Kamien, makes an interesting discovery. After partly filling a glass jar with water,
and pushing a metal rod through a cork stopper until it reaches the water, he
attaches the end of the nail to his friction machine.

After a suitable amount of whirring, the friction machine is disconnected. When
Kleist touches the top of the nail he can feel a slight shock, proving that static
electricity has remained in the jar. It is the first time that electricity has been stored
in this way, for future discharge, in the type of device known as a capacitor.

In 1746 the same principle is discovered by Pieter van Musschenbroek, a physicist
in the university of Leyden. As a professional, he makes much use of the new
device in laboratory experiments. Though sometimes called a Kleistian jar, it
becomes more commonly known as the Leyden jar.

Within a year or two an improvement is made which gives the capacitor its lasting
identity. The water in the vessel is replaced by a lining of metal foil, with which
the metal rod projecting from the jar is in contact. Another layer of metal foil is
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wrapped round the outside of the jar. The two foils are charged with equal amounts
of electricity, one charge being positive and the other negative.

The principle of plates bearing opposite charges, and separated only by a narrow
layer of insulation, remains constant in the development of capacitors - much used
in modern technology.

Watson and Franklin: 1745-1752

In 1745 the Royal Society in London awards its highest honour, the Copley medal,
to William Watson for his researches into electricity. It is the fashionable subject
of the moment, and is about to become more so with the development of the
Leyden jar.

In 1747 Watson sets up an ambitious experiment to discover the speed at which
electricity travels. He arranges an electrical circuit more than two miles long,
linking the positive and negative metal foils of a Leyden jar. There seems to be no
measurable difference between the completion of the circuit and the moment when
an observer at the middle of the loop feels the shock. Watson concludes that
electricity is 'instantaneous'.

His conclusion is not an accurate description of the flow of electricity, but the
experiment is nonetheless impressive. As the leading figure in electrical research,
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Watson is now in touch with an enthusiastic experimenter on the other side of the
Atlantic, Benjamin Franklin.

Watson and Franklin independently arrive at a new and correct concept of
electricity - that instead of being created by friction between two surfaces, it is
something transferred from one to the other, electrically charging both. They see
electricity as the flow of a substance which can be neither created nor destroyed.
The total quantity of electricity in an insulated system remains constant.

Franklin, a scientist with a popular touch, coins several of the terms which are now
standard - positive and negative, conductor, battery (in the sense of a series of
Leyden jars linked for simultaneous charge or discharge). His papers on the
subject, gathered and published in 1751 as Experiments and Observations on
Electricity, become the first (and perhaps only) electrical best-seller. Widely read
in successive English editions, and translated into French, German and Italian, this
short book makes Franklin an international celebrity.

His reputation is further enhanced, in the following year, when he devises history's
most dramatic, and dangerous, electrical experiment.

The new Leyden jars are powerful enough to generate a spark which is both visible
and audible. It occurs to many that this effect may be the same as that generated in
nature in the form of lightning. Franklin invents a way of testing this idea.

160 |Page



In Philadelphia, in 1752, he adds a metal tip to a kite and flies it on a wet string
into a thunder cloud. The bottom of the string is attached to a Leyden jar. The point
Is made when the Leyden jar is successfully charged. For the popular audience
Franklin makes the effect visible. He attracts sparks from a key attached to the line.
His fame soars. (But the next two people attempting the experiment are killed.)

In conducting his experiment, Franklin already has in mind a practical application
If the science proves correct. He reasons that if celestial electricity can be attracted
to a metal point, then a rod projecting from the top of a church steeple, connected
by a metal strip to the earth, could serve as a conductor for any stroke of lightning
and thus save the building from harm.

When the British army proposes to construct a magazine at Purfleet for the storage
of gunpowder, William Watson recommends that this highly explosive building be
protected by one of Benjamin Franklin's lightning conductors. The proposal is
accepted. The science of electricity finds the first of its myriad eventual roles in
everyday life.

Joseph Black and latent heat: 1761

Joseph Black notices that when ice melts it absorbs a certain amount of heat
without any rise in temperature. He reasons that the heat must have combined with
the particles of ice and still be present in the water at 0°C. Heat of this kind (as
Cavendish later perceives) consists of greater activity among the molecules, in a
form of energy which will be transferred again if the water freezes.
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Black calls this phenomenon latent heat, and teaches it in his lectures at the
university of Glasgow from 1761. An important discovery in itself, it also enables
him to be the first to distinguish between heat (energy transferred from a warmer to
a colder object) and temperature (the amount of energy present at a given

moment).
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